权重衰退及代码

一、硬性限制

1、通常不限制偏移b,因为限制不会有区别;seta越小,意味着正则项强

2、优化的是最小化的损失函数

3、后部的限制条件,每个项的平方和小于一个值;极端情况下,当seta等于0,意味着所有的w为0,即只有一个偏移,比如seta为1 ,每个w都不会大于1,并且当w越多,每个w就相当于越小。

二、柔性限制

1、损失函数后面的那一块又叫做罚函数,可以当成惩罚因子

2、正则项也称为岭回归中的正则化项,向损失函数中添加L2范数(参数向量的平方和),有助于防止模型过度拟合训练数据,通过惩罚较大的参数值来促使模型更加简单(限制w的取值)且泛化能力更强。

三、中心点是最优解但是容易过拟合 ,所以要拉动它,就是用这个平方项它往左下角拉

四、参数更新

权重衰退的称呼是因为,先在权重减小的基础上,再做梯度下降。

五、总结

六、代码

1、生成数据:略,但生成数据可以考虑生成过拟合的数据,比如我们训练数据很小

2、初始化模型参数:略

3、定义𝐿2范数惩罚

def l2_penalty(w):
    return torch.sum(w.pow(2)) / 2

4、定义训练代码实现

def train(lambd):
    #初始化模型参数
    w, b = init_params()
    net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss
    num_epochs, lr = 100, 0.003
    animator = d2l.Animator(xlabel='epochs', ylabel='loss', yscale='log',
                            xlim=[5, num_epochs], legend=['train', 'test'])
    for epoch in range(num_epochs):
        for X, y in train_iter:
            # 增加了L2范数惩罚项,
            # 广播机制使l2_penalty(w)成为一个长度为batch_size的向量
            l = loss(net(X), y) + lambd * l2_penalty(w)
            l.sum().backward()
            d2l.sgd([w, b], lr, batch_size)
        if (epoch + 1) % 5 == 0:
            animator.add(epoch + 1, (d2l.evaluate_loss(net, train_iter, loss),
                                     d2l.evaluate_loss(net, test_iter, loss)))
    print('w的L2范数是:', torch.norm(w).item())

5、lambd往大了调,是为了降低w的l2 norm,达到避免过拟合的效果;随着 𝜆λ 增大,模型在优化过程中会更加倾向于减小参数 wi​ 的值,以减少正则项的值。因此,为了最小化整体损失函数,参数的平方和(即L2范数)会变小。

6、总结

  • 正则化是处理过拟合的常用方法:在训练集的损失函数中加入惩罚项,以降低学习到的模型的复杂度。

  • 保持模型简单的一个特别的选择是使用𝐿2惩罚的权重衰减。这会导致学习算法更新步骤中的权重衰减。

  • 权重衰减功能在深度学习框架的优化器中提供。

  • 在同一训练代码实现中,不同的参数集可以有不同的更新行为。

  • 20
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值