权重衰减
下面来学习一些正则化模型的技术。
为什么要正则化?
- 我们可以通过去收集更多的训练数据来缓解过拟合。 但这可能成本很高,耗时颇多,或者完全超出我们的控制,因而在短期内不可能做到。 假设我们已经拥有尽可能多的高质量数据,便将重点放在正则化技术上。
实际上,限制特征的数量是缓解过拟合的一种常用技术。
但简单地丢弃特征对于这项工作来说可能过于生硬。 我们继续思考多项式回归的例子,考虑高维输入可能发生的情况。 多项式对多变量数据的自然扩展称为单项式(monomials), 也可以说是变量幂的乘积。 单项式的阶数是幂的和。
注意,随着阶数𝑑的增长,带有阶数𝑑的项数迅速增加。
即使是阶数上的微小变化,比如从2到3, 也会显著增加我们模型的复杂性。
因此,我们经常需要一个更细粒度的工具来调整函数的复杂性。
范数与权重衰减
权重衰减是最广泛使用的正则化的技术之一
在训练参数化机器学习模型时, 权重衰减(weight decay)是最广泛使用的正则化的技术之一, 它通常也被称为𝐿2正则化。
这项技术通过函数与零的距离来衡量函数的复杂度, 因为在所有函数𝑓中,函数𝑓=0(所有输入都得到值0) 在某种意义上是最简单的。
一种简单的方法是通过线性函数 𝑓(𝐱)=𝐰⊤𝐱 中的权重向量的某个范数来度量其复杂性, 例如‖𝐰‖2。
要保证权重向量比较小, 最常用方法是将其范数作为惩罚项加到最小化损失的问题中。
将原来的训练目标最小化训练标签上的预测损失, 调整为最小化预测损失和惩罚项之和。
现在,如果我们的权重向量增长的太大, 我们的学习算法可能会更集中于最小化权重范数‖𝐰‖2。
回顾一下线性回归例子。 我们的损失由下式给出:
𝐱(𝑖)是样本𝑖i的特征, 𝑦(𝑖)是样本𝑖的标签, (𝐰,𝑏)是权重和偏置参数。
为了惩罚权重向量的大小, 我们必须以某种方式在损失函数中添加‖𝐰‖2, 但是模型应该如何平衡这个新的额外惩罚的损失?
实际上,我们通过正则化常数λ来描述这种权衡, 这是一个非负超参数,我们使用验证数据拟合:
对于𝜆=0,我们恢复了原来的损失函数。 对于𝜆>0,我们限制‖𝐰‖的大小。
这里我们仍然除以2:当我们取一个二次函数的导数时, 2和1/2会抵消,以确保更新表达式看起来既漂亮又简单。
为什么使用平方范数而不是标准范数(即欧几里得距离)?
- 这样做是为了便于计算。 通过平方𝐿2范数,我们去掉平方根,留下权重向量每个分量的平方和。 这使得惩罚的导数很容易计算:导数的和等于和的导数。
为什么我们首先使用𝐿2范数,而不是𝐿1范数。
- 事实上,这个选择在整个统计领域中都是有效的和受欢迎的。 𝐿2正则化线性模型构成经典的岭回归(ridge regression)算法, 𝐿1正则化线性回归是统计学中类似的基本模型, 通常被称为套索回归(lasso regression)。
- 使用𝐿2范数的一个原因是它对权重向量的大分量施加了巨大的惩罚。 这使得学习算法偏向于在大量特征上均匀分布权重的模型。 在实践中,这可能使它们对单个变量中的观测误差更为稳定。
- 相比之下,𝐿1惩罚会导致模型将权重集中在一小部分特征上, 而将其他权重清除为零。 这称为特征选择(feature selection),这可能是其他场景下需要的。
𝐿2正则化回归的小批量随机梯度下降更新如下式:
我们根据估计值与观测值之间的差异来更新𝐰。 然而,我们同时也在试图将𝐰的大小缩小到零。
这就是为什么这种方法有时被称为权重衰减。 我们仅考虑惩罚项,优化算法在训练的每一步衰减权重。
与特征选择相比,权重衰减为我们提供了一种连续的机制来调整函数的复杂度。
较小的𝜆值对应较少约束的𝐰, 而较大的𝜆值对𝐰的约束更大。
是否对相应的偏置𝑏2进行惩罚在不同的实践中会有所不同, 在神经网络的不同层中也会有所不同。 通常,网络输出层的偏置项不会被正则化。
可以看出每次更新参数的时候都会把wt乘以一个小于1的数,所以叫权重衰退
- 权重衰退通过L2正则项使得模型参数不会过大,从而控制模型复杂度
- 正则项权重λ是控制模型复杂度的超参数
高维线性回归
我们通过一个简单的例子来演示权重衰减。
%matplotlib inline
import torch
from torch import nn
from d2l import torch as d2l
首先,生成一些数据,生成公式如下:
(
)
我们选择标签是关于输入的线性函数。 标签同时被均值为0,标准差为0.01高斯噪声破坏。
为了使过拟合的效果更加明显,我们可以将问题的维数增加到𝑑=200, 并使用一个只包含20个样本的小训练集。
n_train, n_test, num_inputs, batch_