自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 轮趣IMU惯导学习

找一个相对空旷的无干扰的地方,将模块连接至电脑,打开上位机。是一款高精度的姿态传感器,可以测量载体的三维姿态角度、加速度、角速度和磁场强度信息。WHEELTEC H30 系列模块时,可能会出现输出位姿数据波动较大的状况,需要对系统进行零偏校准操作。如遇到输出的俯仰角和横滚角不为零的问题,说明模块与安装平面存在安装 误差角,可以进行姿态角重置。的航向角增量完成,最终输出航向角是相对的磁航向。版引脚分布和对应功能如下图表,默认使用串口输出,注意:485。基础上的修改算法,可以解算被测物体的全姿态,包括绝对航。

2026-01-05 14:33:00 880

原创 年轻人尽早炒股

殊不知那些批判者正穿着“价值投资”的皇帝新衣——他们对自己参与的宏观赌局视而不见,却对唯一公开显示波动的K线图指手画脚。学历通胀是教育赛道的杠杆化,考研教培机构不会告诉你,你在用三年时间和很多机会成本,做多“文凭溢价”这个持续贬值的资产。这个时代最精妙的骗局,是让大多数人相信自己没在赌桌上,当所有人都在被动参与资产轮盘时,清醒的投机者至少知道自己在冒险,而蒙眼的群众却把枷锁当护身符,把命运当确定性。考编大军在做多“体质稳定性”,把最宝贵的青春投入行测申论,本质是买入一份看涨国家治理体系的期权。

2025-10-20 08:50:29 174

原创 YOLOv8训练过程中参数的设置

(有多少层、每层是什么类型、通道数等)的 YAML 文件。使用这种文件意味着你将。

2025-09-28 21:09:21 1132

原创 深蓝学院moveit机械臂

然后配置自身碰撞检测,只要点击Generate按钮即可,他会列举出碰撞的模块,你选择一行,他右侧会给你高亮(Adjacent Links表示相邻模块,Never in Collision表示绝对不会碰撞,上面是设置模型的采样密度,保持默认即可,这种碰撞检测功能没啥用,ROS很多东西都是很鸡肋的)关闭所有终端,启动一个终端,输入roscore(如果没有启动roscore直接后面的命令会报错)启动另一个终端(注意要在我们的ROS根目录catkin_ws执行,否则后面会找不到包)

2025-09-28 21:08:53 339

原创 虹膜边缘预测函数

术语中文名关系功能Iris虹膜整体决定眼睛颜色,控制瞳孔大小Collarette虹膜卷缩轮虹膜上的一个组成部分(一个环状隆起)是虹膜解剖结构上的重要分界线,在虹膜学中有特殊意义所以,下次当您看到眼睛的特写照片时,可以仔细找找这个有趣的结构:在有色虹膜的中央区域,围绕着瞳孔的那一圈锯齿状的“衣领花边”,它就是Collarette。Pupil英文中文定义Pupil瞳孔虹膜中央的圆形开口,根据光线强弱收缩或扩张,以控制进光量。Iris虹膜眼睛的有颜色部分,通过肌肉运动控制瞳孔的大小。

2025-09-28 21:08:08 795

原创 从零开始循序渐进地学习Conda环境管理

我们来从零开始循序渐进地学习Conda环境管理。

2025-09-23 17:55:29 636

原创 SW模型转换为urdf模型(aobu机械臂模型)

坐标轴的建立​​​​​​完成六个基准轴的建立在工具栏中选择Tools中的Export as URDF第一步选择基座选择串联加号,依次添加link与joint点击这个按钮由于插件的原因,里面内容都是空的,前面设置的基准轴和joint连接方式全部需要重新设置一遍这三个部分需要重新设置一遍,就是重新点一遍,当你重新点一遍Axis的时候下面轴的那部分会显示出数值注意保存的名称中不能有中文老版本需要修改这个邮箱需要把里面的2改为@

2025-07-17 22:54:54 606

原创 批量处理指定文件夹中的图片文件,将每张图片调整为短边1080像素(保持长宽比)

批量处理指定文件夹中的图片文件,将每张图片调整为短边1080像素(保持长宽比),确保输出图片总像素约200万像素(1080p标准),处理结果保存到新文件夹。:日志级别的数值,对应 OpenCV 的 WARNING 级别。是 OpenCV 中用于控制日志输出级别的设置命令。:OpenCV 库的 Python 接口模块。错误隔离:每个文件独立try-except。OpenCV 日志级别对照表。:批量处理文件夹内所有图片。进度反馈:实时打印处理状态。自动识别扩展名大小写。:设置日志级别的函数。

2025-07-11 09:43:59 581

原创 yolov8-seg实例分割

比物体检测更进一步,它涉及识别图像中的单个物体,并将它们与图像的其他部分分割开来。实例分割模型的输出是一组勾勒出图像中每个物体的遮罩或轮廓,以及每个物体的类标签和置信度分数。当你不仅需要知道物体在图像中的位置,还需要知道它们的具体形状时,实例分割就非常有用了。YOLOv8是一个流行的目标检测和分割模型,不同的后缀(如n, s, m, l, x)表示不同的模型大小和复杂度。这是模型在CPU上使用ONNX格式运行时的速度,以毫秒为单位。考虑因素:在保持相对较快的处理速度的同时,提供了更好的检测和分割效果。

2025-07-03 08:32:34 2810

原创 如何将Word里每页的行数设置成50行

将“使用页边距——水平起点/垂直起点”的数值改小,这里水平起点改为3.05cm,垂直起点2.3cm。打开“页面布局”,之后点击图片圈起来的小图标,即可出现“页面设置”页面。路径:页面设置—文档网络,可以看到默认行数设置最大值为48行。把“网络绘图——使用页边距“+”字体设置——字号”改小即可。路径:文件——页面设置——文档网格——绘图网络。将字号改小,这里改成“小五”字体。最后:想设置57以上的行数,只需。

2025-06-29 20:28:06 1534

原创 CAD图纸转换为PDF

将CAD图纸转换为PDF是一种非常常见的需求,主要目的是为了,因为PDF格式具有通用性强、不易被修改、能保持布局和比例、文件相对较小等优点。

2025-06-26 20:51:27 1332

原创 YOLO训练集和验证集的比例分配指南

在YOLO目标检测模型训练中,训练集和验证集的合理分配对模型性能至关重要。

2025-06-20 10:51:32 684

原创 如何做技术分享

最好的演讲就是讲故事, 要让听众有画面感, 听单田芳的评书, 即使是纯声音, 听众也不会感到枯燥难懂。软件工程师通常很聪明,做具体技术工作时得心应手, 但却又常常无法把自己的工作的价值呈现给听众, 听众会感到枯燥, 无聊, 甚至会怀疑工程师的技术水平。技术分享, 建议分层次, 让不同背景的听众都能听到和自己有关联的内容, 都能从各自的层面上得到相似的理解。3. 让听众思考: 讲话时一定要站在听众面前讲,面向听众,和听众互动, 争取和每一位听众都有目光接触, 而且目光接触时间不少于1秒钟。

2025-06-05 16:42:42 376

原创 基于yolov8的obb框架, 开展指针类表计,指针位置识别的模型训练

基于YOLOv8-OBB框架实现指针类表计的指针位置识别是一个结合旋转目标检测与仪表特性的专业任务。OBB 能够精确贴合任何角度的物体,提供比传统边界框更精确的检测,使这些应用受益匪浅。

2025-06-05 16:40:55 844

原创 使用YoloV8实现OBB框检测

使用定向边界框(OBB)训练精确的物体检测模型需要一个全面的数据集。本文解释了与模型兼容的各种 OBB 数据集格式,深入介绍了这些格式的结构、应用和格式转换方法。数据集使用DOTA。

2025-06-04 08:56:27 1241

原创 rolabellmg如何旋转矩形框

快捷键为:e ,旋转方向快捷键为 zxcv。当然也可用快捷键配合鼠标使用。按住e键画框后,鼠标右键选中框的一角即可旋转角度,鼠标左键可调整框大小。注意:angle是旋转角度的弧度值,水平方向angle=0,顺时针方向旋转,得到的角度值是正值,旋转一周为pi,没有负值。标注完之后,的xml示例如下,cx,cy代表标注框中心点的坐标,w,h代表宽和高,angle代表标注矩形框的角度。经常用到的也就W、Delete、D键,如果标签填错了,可以用编辑标签修改即可。现在来认识下voc格式生成的xml文件。

2025-06-04 08:41:57 828

原创 用于批量调整图像大小的脚本,将图像缩放到大约200万像素,并保存到指定的输出文件夹

这段代码是一个用于批量调整图像大小的Python脚本,主要功能是将指定文件夹中的图片缩放至约200万像素(保持宽高比),并将处理后的图片保存到另一个文件夹。

2025-05-21 08:54:30 416

原创 研究生养成计划5月16日-掌握ROS核心组件:TF、rosbag与rqt全解析

rqt_console 是 ROS 中用于显示和过滤日志的图形化插件。

2025-05-16 15:12:11 1012

原创 研究生养成计划5.14

仿真环境实体机器人导航场景依赖于gazebo搭建的仿真环境依赖于现实环境传感器在gazebo中通过插件来模拟一些列传感器,比如:雷达、摄像头、编码器....使用的是真实的传感器机器人模型依赖于机器人模型,以实现仿真环境下的机器人的显示,通过robot_state_publisher、joint_state_publisher实现机器人各部件的坐标变换。机器人模型不是必须的,如果不使用机器人可以通过static_transform_publisher发布导航必须的坐标变换;

2025-05-14 22:36:08 2245

原创 研究生养成计划5月5日——苟有恒,何必三更眠五更起;最无益,莫过一日曝十日寒

学习:《机器人操作系统》ROS是多进程(节点)的分布式框架,一个完整的ROS系统实现:在多级层深的ROS系统中,其实现与维护可能会出现一些问题,比如,如何关联不同的功能包,繁多的ROS节点应该如何启动?功能包、节点、话题、参数重名时应该如何处理?不同主机上的节点如何通信?本章主要内容介绍在ROS中上述问题的解决策略(见本章目录),预期达成学习目标也与上述问题对应:掌握元功能包使用语法;掌握launch文件的使用语法;理解什么是ROS工作空间覆盖,以及存在什么安全隐患;掌握节点名称重名时的处理方式;掌握话题名

2025-05-05 23:46:06 979

原创 研究生养成计划5月4日

学习:《机器人操作系统》参数服务器以及实操参数服务器在ROS中主要用于实现不同节点之间的数据共享。参数服务器相当于是独立于所有节点的一个公共容器,可以将数据存储在该容器中,被不同的节点调用,当然不同的节点也可以往其中存储数据,关于参数服务器的典型应用场景如下:上述场景中,全局路径规划和本地路径规划时,就会使用到参数服务器:参数服务器,一般适用于存在数据共享的一些应用场景。以共享的方式实现不同节点之间数据交互的通信模式。存储一些多节点共享的数据,类似于全局变量。参数服务器实现是最为简单的,该模型如下图所示,该

2025-05-04 23:05:22 1214

原创 研究生养成计划5月3日

服务通信中,客户端提交两个整数至服务端,服务端求和并响应结果到客户端,请创建服务器与客户端通信的数据载体。srv 文件内的可用数据类型与 msg 文件一致,且定义 srv 实现流程与自定义 msg 实现流程类似:按照固定格式创建srv文件编辑配置文件编译生成中间文件服务通信中,数据分成两部分,请求与响应,在 srv 文件中请求和响应使用---分割,具体实现如下:编写服务通信,客户端提交两个整数至服务端,服务端求和并响应结果到客户端。服务端客户端数据编写服务端实现;编写客户端实现;

2025-05-03 23:39:55 961

原创 研究生养成计划5月2日

学习:《机器人操作系统》作者:刘相权,张万杰 配合赵虚左的视频学完赵虚左第 2 章 ROS通信机制,通信机制重中之重在机器人上可能集成各种传感器(雷达、摄像头、GPS...)以及运动控制实现,为了解耦合,在ROS中每一个功能点都是一个单独的进程,每一个进程都是独立运行的。ROS 中的基本通信机制主要有如下三种实现策略:话题通信(发布订阅模式)服务通信(请求响应模式)参数服务器(参数共享模式)话题通信是ROS中使用频率最高的一种通信模式,话题通信是基于发布订阅模式的,也即:一个节点发布消息,另一个节点订阅

2025-05-02 23:09:33 966

原创 研究生养成计划5月1日

可是新的行为没有经过实践,存在风险,而且没有建立起神经通路,因此,在这个行为还没有形成坚固的路径时,你必须特意压制平时的行为。(6)echo "source ~/catkin_ws/devel/setup.bash" >>~/.bashrc source ~/.bashrc,把工作空间添加到ROS环境变量,将"source ~/catkin_ws/devel/setup.bash"指令加入到~/.bashrc文件中,这样每次打开终端时,~/.bashrc文件会自动运行,而不必手动刷新环境。

2025-05-01 22:21:50 2106

原创 研究生养成计划5月15日

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考gmapping 是ROS开源社区中较为常用且比较成熟的SLAM算法之一,gmapping可以根据移动机器人里程计数据和激光雷达数据来绘制二维的栅格地图该移动机器人可以发布里程计消息机器人需要发布雷达消息(该消息可以通过水平固定安装的雷达发布,或者也可以将深度相机消息转换成雷达消息)

2025-04-23 15:28:41 846

批量处理指定文件夹中的图片文件,将每张图片调整为短边1080像素(保持长宽比),确保输出图片总像素约200万像素

批量处理指定文件夹中的图片文件,将每张图片调整为短边1080像素(保持长宽比),确保输出图片总像素约200万像素

2025-07-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除