Datawhale - Task03:Actor-Critic

目录

一、REINFORCE算法

二、带基线函数的REINFORCE算法

三、Actor-Critic算法

四、A2C与A3C算法


        本文为Datawhale《深度强化学习基础与实践(二)》学习总结。

        以下为本文参考资料:

  1. Reinforcement Learning: An Introduction
  2. 动手学强化学习(https://hrl.boyuai.com)
  3. JoyRL(datawhalechina/joyrl-book (github.com)
  4. 神经网络与深度学习,邱锡鹏

        今天来整理一下REINFORCE、带基线函数的REINFORCE、AC、A2C、A3C算法。

一、REINFORCE算法

        基于轨迹的梯度公式(含折扣因子$\gamma$):

$\nabla_{\theta} J(\theta) = E_{\tau \sim \rho_{\theta}}\left[ \sum_{\tau = t}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{\tau} | s_{\tau}) \gamma^{\tau - t} \sum_{i = \tau}^{\infty} \gamma^{i - \tau} r_{i} \right]$

        算法伪代码:

        更新参数时的\gamma^{t}源自梯度公式中的$\gamma^{\tau - t}$

二、带基线函数的REINFORCE算法

        REINFORCE算法的缺点是不同路径之间的方差很大,导致训练不稳定。一种减少方差的方法是引入一个基线函数,若要估计函数f的期望,为了减少f的方差,引入一个已知期望的函数g,令

\hat{f} = f - \alpha (g - Eg)

        函数\hat{f}的期望为E\hat{f} = Ef,方差为

\mathrm{Var}(\hat{f}) = \mathrm{Var}(f) - 2 \alpha \mathrm{Cov}(f, g) + \alpha^{2} \mathrm{Var}(g)

        取\alpha = \mathrm{Cov}(f, g) / \mathrm{Var}(g),可得方差最小值为

\mathrm{Var}(\hat{f}) = \left(1 - (\mathrm{Corr(f, g)})^{2} \right) \mathrm{Var}(f)

        回到REINFORCE算法,为了减小策略梯度的方差,可以引入一个与a_{t}无关的基准函数b(s_{t}),一个自然的选择是对状态价值V(s_{t}; w)的估计。

三、Actor-Critic算法

        在REINFORCE算法中,我们每次需要采集一条完整的轨迹,这样的采样效率较低,并且方差较大。我们可以引入一个价值函数来对当前策略进行评估,来减小方差,提高采样效率。

        Actor-Critic算法是一种结合策略梯度和时序差分学习的强化学习方法,其中表演者Actor指策略函数\pi(s, a | \theta),评论家Critic指价值函数V(s; w)

四、A2C与A3C算法

        AC算法能够缓解策略梯度算法的高方差,但并不能彻底解决问题。为了进一步缓解高方差问题,可以引入一个优势函数(advantage function),用来表示当前状态-动作对相对于平均水平的优势,即

A(s_{t}, a_{t}) = Q(s_{t}, a_{t}) - V(s_{t})

        这就是Advantange Actor-Critic算法,简称为A2C算法。

        A2C并不是由一篇论文单独提出的,而是在异步形式的A2C算法,即A3C算法的论文中提出的,其在A2C算法原理上引入了多进程的概念,提高了训练效率。以下为原文中A3C的伪代码。

        A3C算法中有多个进程,每个进程拥有一个独立的环境和智能体,每隔一段时间都会将自己的参数同步至全局网络中,由此提高训练效率。

  • 22
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值