目录
一、核心概念区分
瞬态分析研究系统在短时动态载荷下的响应,时域分析和频域分析是两种根本不同的数学描述框架:
分析维度 | 时域分析 | 频域分析 |
---|---|---|
变量 | 时间 t | 频率 f 或角频率 ω |
描述对象 | 响应随时间的变化过程 | 响应的频率成分与幅值/相位分布 |
数学工具 | 微分方程(直接求解) | 傅里叶变换(信号分解与重构) |
典型输入 | 任意时变载荷(脉冲、阶跃等) | 周期载荷(简谐波、随机振动等) |
二、时域分析:时间维度直接求解
1. 基本原理
通过数值积分方法逐步求解动力学微分方程,直接获得系统在时间序列上的响应。
控制方程:
2. 关键特点
-
适用性广:天然支持非线性(材料、几何、接触)和瞬态冲击问题。
-
直观展示:直接输出位移、应力等参数随时间的变化曲线。
-
计算成本高:需逐时间步计算,对复杂模型耗时显著。
3. 典型算法
算法类型 | 代表方法 | 适用场景 |
---|---|---|
显式积分 | 中心差分法 | 高速冲击、爆炸(步长极短) |
隐式积分 | Newmark-β法 | 低频振动、长期仿真(步长较大) |
分段线性法 | 状态空间法 | 控制系统与结构耦合分析 |
4. 应用案例
-
汽车碰撞仿真:显式积分法模拟车体在毫秒级冲击下的变形。
-
地震响应分析:隐式积分法计算建筑在分钟级地震波下的动力响应。
-
机械急停过程:观察齿轮系统在紧急制动时的瞬时扭矩波动。