目录
一、什么是谐波响应
1.1 基本定义
谐波响应(Harmonic Response)是指结构在周期性简谐载荷(如正弦波激励)作用下的稳态振动响应。
-
简谐载荷:载荷随时间按正弦或余弦规律变化,例如:
1.2 关键问题
谐波响应分析要回答:
-
当结构受到某个频率的周期性载荷时,它的振幅有多大?
-
结构的振动相位相对于激励是否有延迟?
-
在哪些频率下会发生共振?
二、谐波响应的数学基础
2.1 单自由度系统的谐波响应
对于一个单自由度系统(如弹簧-质量-阻尼系统),其运动方程为:
(1)稳态解
稳态解的形式为:
(2)幅值和相位
响应的幅值和相位可以通过以下公式计算:
2.2 多自由度系统的谐波响应
对于多自由度系统,运动方程可以写成矩阵形式:
通过模态分析,可以将多自由度系统解耦为多个单自由度系统,然后分别求解每个模态的谐波响应,最后叠加得到总响应。
三、谐波响应案例分析
步骤1:在模态分析的基础上建立谐波响应系统
将谐波响应项目Harmonic Response拖拽到模态分析Modal的第六个框求解solution的位置
步骤2: 载荷设置
步骤3:分析器设置
模态分析器设置:
谐波响应分析器设置:
步骤4:结果后处理
关键结构项:
- 总变形 (Total Deformation)
- 频率响应(Frequency Response)
节点选择