合工大-python作业-图像识别细胞质和细胞核占比计算

前言:

这个题,也是我从好兄弟哪里学来的,我学习后加了注释。希望大家参考的时候,不要只是白嫖代码,看看也是好的。后面我有时间会出一个详细的解释和介绍。

题目:

根据附件 cell.jpg,使用 opencv 库或者 PIL 库计算细胞核与细胞质的面积比

 

import cv2
#对图像进行预处理,消除减少细胞中具有干扰性的东西
img = cv2.imread("./cell.jpg")
height,width = img.shape[:2]  #获取原图像的水平方向尺寸和垂直方向尺寸。
img = cv2.resize(img,(height*2,width*2),interpolation=cv2.INTER_CUBIC)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#将图片颜色空间转化为灰度空间
blurred = cv2.GaussianBlur(gray,(9,9),0)#高斯模糊,高斯核为9*9
#cv2.imshow('a',blurred)#展实模糊后的图像
canny2=cv2.Canny(blurred,82,150)#边缘检测,两个值为边缘检测阈值
#cv2.imshow('before',canny2)
kernel= cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))#构造卷积核,图像边界
canny2=cv2.morphologyEx(canny2,cv2.MORPH_CLOSE,kernel)#闭运算排除小黑洞
#计算轮廓
contours,hierarchy=cv2.findContours(canny2,cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE)#以列表的形式存储,链表的形式返回
cv2.drawContours(img,contours,3,(0,0,255),2)#绘制图像,轮廓信息,轮廓点,色彩,轮廓宽度
#cv2.imshow('after',img)
areasum=[]
#计算轮廓面积
for i in contours:
    area=cv2.contourArea(i)#每个轮廓点的面积
    print(area)
    if area<10:break
    areasum.append(area)
bili=float(areasum[0]/(areasum[3]-areasum[0]))
print(bili)
cv2.waitKey(0)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值