Stirling 公式 (Stirling‘s Formula)和 Stirling 公式展开的伽马函数近似

Stirling 公式 (Stirling's Formula)

概述

Stirling 公式是一个用于近似阶乘的公式。它在数学和物理学中有广泛的应用,尤其在计算大数阶乘、组合数学、概率论和统计学中非常有用。该公式由詹姆斯·斯特林(James Stirling)于1730年代提出。

公式陈述

Stirling 公式的基本形式为:

\[ n! \approx \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \]

其中 \( n! \) 表示 \( n \) 的阶乘,\(\pi\) 是圆周率,\(e\) 是自然对数的底。

更准确的形式,包括了更高阶的近似项:

\[ n! \approx \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \left( 1 + \frac{1}{12n} + \frac{1}{288n^2} - \frac{139}{51840n^3} + \cdots \right) \]

在大多数情况下,基本形式已经足够准确。

推导

Stirling 公式的推导方法有很多种,以下是一种经典的推导方法,利用了积分和对数的技巧。

1. **阶乘的对数表示**:
   \[ \ln(n!) = \ln(1 \cdot 2 \cdot 3 \cdots n) = \sum_{k=1}^n \ln(k) \]

2. **利用积分近似**:
   对于大 \( n \),可以用积分来近似和式:
   \[ \sum_{k=1}^n \ln(k) \approx \int_1^n \ln(x) \, dx \]

3. **计算积分**:
   \[ \int_1^n \ln(x) \, dx = \left. x \ln(x) - x \right|_1^n = n \ln(n) - n + 1 \]

4. **组合项**:
   由于我们忽略了对数积分的低阶项,因此我们需要考虑一个校正因子来更精确地近似阶乘:
   \[ \ln(n!) \approx n \ln(n) - n + \ln(\sqrt{2 \pi n}) \]

5. **指数化**:
   \[ n! \approx e^{n \ln(n) - n} \cdot \sqrt{2 \pi n} \]
   \[ n! \approx \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \]

应用

Stirling 公式在许多领域中都有重要应用,包括但不限于:

1. **计算大数阶乘**:
   例如,计算 \( 100! \) 这样的大数阶乘,直接计算非常复杂,使用 Stirling 公式可以得到一个近似值。

2. **组合数学**:
   在计算组合数时,例如 \( \binom{n}{k} = \frac{n!}{k!(n-k)!} \),使用 Stirling 公式可以简化计算。

3. **概率论和统计学**:
   在处理大样本问题时,Stirling 公式帮助简化概率分布的计算,例如二项分布、泊松分布和正态分布的近似。

4. **物理学和统计力学**:
   Stirling 公式用于计算巨数阶乘在微观粒子系统中的状态数,例如在玻尔兹曼统计和费米-狄拉克统计中。

例子

1. **计算 \( 10! \)**:
   \[ 10! = 3628800 \]
   使用 Stirling 公式近似:
   \[ 10! \approx \sqrt{2 \pi \cdot 10} \left( \frac{10}{e} \right)^{10} \approx \sqrt{62.83} \left( \frac{10}{2.718} \right)^{10} \approx 2.5066 \cdot 10^{10} = 3598695.62 \]

   可以看到,Stirling 公式给出的近似值非常接近实际值。

2. **组合数**:
   \[ \binom{50}{25} = \frac{50!}{25! \cdot 25!} \]
   使用 Stirling 公式近似:
   \[ \binom{50}{25} \approx \frac{\sqrt{2 \pi \cdot 50} \left( \frac{50}{e} \right)^{50}}{\left( \sqrt{2 \pi \cdot 25} \left( \frac{25}{e} \right)^{25} \right)^2} = \frac{\sqrt{2 \pi \cdot 50} \cdot \left( \frac{50}{e} \right)^{50}}{2 \pi \cdot 25 \cdot \left( \frac{25}{e} \right)^{50}} \approx \frac{\sqrt{100\pi} \cdot \left( \frac{2}{e} \right)^{50}}{2\pi \cdot 25} \approx \frac{10 \sqrt{\pi} \cdot \left( \frac{2}{e} \right)^{50}}{50\pi} \approx \frac{\left( \frac{2}{e} \right)^{50}}{\sqrt{50\pi}} \]

总结

Stirling 公式是一个强大的数学工具,用于近似计算大数阶乘。在组合数学、概率论、统计学以及物理学中,Stirling 公式都有广泛的应用。理解和掌握 Stirling 公式及其推导方法,可以大大简化许多复杂计算,提供有效的近似结果。

现在我们证明 Stirling 公式展开的伽马函数近似

Stirling 公式不仅适用于阶乘,也适用于伽马函数。我们需要证明对于大的 \( z \),伽马函数 \(\Gamma(z)\) 的近似为:

\[ \Gamma(z) \approx \sqrt{2 \pi z} \left( \frac{z}{e} \right)^z \]

更精确地:

\[ \Gamma(z) \approx \sqrt{2 \pi z} \, z^{z-\frac{1}{2}} e^{-z} \]

证明步骤

1. **伽马函数的定义**:

   伽马函数定义为:

   \[ \Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt \]

2. **Stirling 公式的基本形式**:

   Stirling 公式的一种形式是:

   \[ n! \approx \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \]

   由于 \(\Gamma(n+1) = n!\),我们可以推广 Stirling 公式到伽马函数上:

   \[ \Gamma(n+1) \approx \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \]

3. **推广到伽马函数**:

   伽马函数的递推关系为:

   \[ \Gamma(z+1) = z \Gamma(z) \]

   因此,对于大的 \( z \):

   \[ \Gamma(z+1) \approx \sqrt{2 \pi z} \left( \frac{z}{e} \right)^z \]

   通过伽马函数的递推关系:

   \[ \Gamma(z) = \frac{\Gamma(z+1)}{z} \]

   我们得到:

   \[ \Gamma(z) \approx \frac{\sqrt{2 \pi z} \left( \frac{z}{e} \right)^z}{z} = \sqrt{2 \pi z} \left( \frac{z}{e} \right)^z \cdot \frac{1}{z} = \sqrt{2 \pi z} \, z^{z-1} e^{-z} \]

4. **修正形式**:

   进一步修正为:

   \[ \Gamma(z) \approx \sqrt{2 \pi z} \, z^{z - \frac{1}{2}} e^{-z} \]

   这是因为:

   \[ z^{z-1} = z^{z - \frac{1}{2}} \cdot z^{-\frac{1}{2}} = z^{z - \frac{1}{2}} \cdot \frac{1}{\sqrt{z}} \]

   所以:

   \[ \Gamma(z) \approx \sqrt{2 \pi z} \cdot z^{z - \frac{1}{2}} \cdot e^{-z} \cdot \frac{1}{\sqrt{z}} = \sqrt{2 \pi z} \cdot z^{z - \frac{1}{2}} e^{-z} \]

结论

我们证明了对于大的 \( z \),伽马函数 \(\Gamma(z)\) 可以近似表示为:

\[ \Gamma(z) \approx \sqrt{2 \pi z} \, z^{z-\frac{1}{2}} e^{-z} \]

这个近似在大 \( z \) 时非常精确,在许多应用中非常有用,如计算复杂的积分、概率分布以及物理中的各种问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值