Stirling‘s Formula

文章目录

Keith Conrad. Stirling’s Formula.

Stirling’s Formula

lim ⁡ n → ∞ n ! ( n n / e n ) 2 π n = 1. \lim_{n \rightarrow \infty} \frac{n!}{(n^n/e^n)\sqrt{2\pi n}} =1. nlim(nn/en)2πn n!=1.

Proof:

n ! = ∫ 0 ∞ x n e − x d x = ∫ − n ∞ ( n + n t ) n e − ( n + n t ) n d t = n n n e n ∫ − n ∞ ( 1 + t n ) n e − n t d t . = n n n e n ∫ − ∞ ∞ f n ( t ) d t , \begin{array}{ll} n! &= \int_{0}^\infty x^n e^{-x} \mathrm{d}x \\ &= \int_{-\sqrt{n}}^\infty (n+\sqrt{n}t)^n e^{-(n+\sqrt{n}t)} \sqrt{n} \mathrm{d}t \\ &= \frac{n^n \sqrt{n}}{e^n} \int_{-\sqrt{n}}^{\infty} (1+\frac{t}{\sqrt{n}})^n e^{-\sqrt{n}t} \mathrm{d}t. \\ &= \frac{n^n \sqrt{n}}{e^n} \int_{-\infty}^{\infty} f_n(t) \mathrm{d}t, \end{array} n!=0xnexdx=n (n+n t)ne(n+n t)n dt=ennnn n (1+n t)nen tdt.=ennnn fn(t)dt,
其中
f n ( t ) = { 0 t < n ( 1 + t n ) n e − n t t ≥ n f_{n}(t) = \left \{ \begin{array}{ll} 0 & t< \sqrt{n} \\ (1+\frac{t}{\sqrt{n}})^n e^{-\sqrt{n}t} & t\ge \sqrt{n} \end{array} \right. fn(t)={0(1+n t)nen tt<n tn
接下来证明 f n ( t ) f_n(t) fn(t)趋于 e − t 2 2 e^{-\frac{t^2}{2}} e2t2,
ln ⁡ f n ( t ) = n ln ⁡ ( 1 + t n ) − n t , t ≥ n , \ln f_n(t) = n \ln (1+ \frac{t}{\sqrt{n}}) - \sqrt{n}t , t \ge \sqrt{n}, lnfn(t)=nln(1+n t)n t,tn ,
ln ⁡ ( 1 + x ) = 0 + x − x 2 2 + o ( x 2 ) , \ln (1+x) = 0 + x - \frac{x^2}{2} + o(x^2), ln(1+x)=0+x2x2+o(x2),
n n n足够大的时候
ln ⁡ f n ( t ) = n t − t 2 / 2 + n t + o ( t 2 / n ) = − t 2 2 + o ( t 2 / n ) , \ln f_n(t) = \sqrt{n}t -t^2/2+\sqrt{n}t+o(t^2/n)=-\frac{t^2}{2}+o(t^2/n), lnfn(t)=n tt2/2+n t+o(t2/n)=2t2+o(t2/n),
f n ( t ) → e − t 2 / 2 f_n(t) \rightarrow e^{-t^2/2} fn(t)et2/2.
观察( t ≥ − n t \ge -\sqrt{n} tn )
d d t ( ln ⁡ f n + 1 ( t ) − ln ⁡ f n ( t ) ) = n t n + t − n + 1 t n + 1 + t = ( n − n + 1 ) t 2 ( n + t ) ( n + 1 + t ) ≤ 0 , \begin{array}{ll} \frac{\mathrm{d}}{\mathrm{d}t}(\ln f_{n+1}(t) - \ln f_n(t) ) &= \frac{\sqrt{n}t}{\sqrt{n}+t} - \frac{\sqrt{n+1}t}{\sqrt{n+1}+t} \\ &= \frac{(\sqrt{n}-\sqrt{n+1})t^2}{(\sqrt{n}+t)(\sqrt{n+1}+t)} \le 0, \end{array} dtd(lnfn+1(t)lnfn(t))=n +tn tn+1 +tn+1 t=(n +t)(n+1 +t)(n n+1 )t20,
f n ( 0 ) = 0 f_n(0)=0 fn(0)=0, 故
f n + 1 / f n ≥ 1 , t ∈ [ n , 0 ) , f_{n+1} /f_n \ge 1, \quad t \in [\sqrt{n},0), fn+1/fn1,t[n ,0),
f n + 1 / f n ≤ 1 , t ∈ [ 0 , + ∞ ) . f_{n+1} /f_n \le 1, \quad t \in [0, +\infty). fn+1/fn1,t[0,+).
f n ( t ) f_n(t) fn(t)非负, 故根据单调收敛定理和优解控制定理可知
lim ⁡ n → ∞ ∫ − ∞ + ∞ f n ( t ) d t = ∫ − ∞ + ∞ lim ⁡ n → ∞ f n ( t ) d t = ∫ − ∞ + ∞ e − t 2 2 d t = 2 π . \lim_{n\rightarrow \infty} \int_{-\infty}^{+\infty} f_n(t) \mathrm{d}t = \int_{-\infty}^{+\infty} \lim_{n\rightarrow \infty} f_n(t) \mathrm{d}t = \int_{-\infty}^{+\infty}e^{-\frac{t^2}{2}}\mathrm{d} t=\sqrt{2 \pi}. nlim+fn(t)dt=+nlimfn(t)dt=+e2t2dt=2π .

证毕.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值