第1关:迷宫问题

任务描述
密密被困在一个迷宫里,迷宫有n个路口,编号为1-n。密密现在站在第一个路口,出口编号为m。先给出每个路口通向何处,问密密能否逃出迷宫。

编程要求
输入
多组数据,每组数据n+2行。第一行为一个正整数n代表路口的个数,之后n行,这n行中的第i行为第i个路口的向左路口、向前路口、向右路口。最后一行为一个正整数m代表迷宫的终点。当n=0时输入结束。

输出
每组数据输出一行,若密密能走出迷宫,输出“YES”,否则输出“NO”。

测试说明
平台会对你编写的代码进行测试:

测试输入:
6
0 2 0
3 5 6
0 0 4
0 0 0
0 0 0
7 0 0
7
3
2 0 0
0 0 0
0 0 0
3
0

预期输出:
YES
NO

#include <iostream>
using namespace std;
int m,n;//m:出口编号  n:入口
int tag;//输出标记
int DFS(int k,int (*a)[3])
{//深度搜索第k层,k:当前路口
/**************begin************/
if(k==m) //当前等于出口编号
{
    tag = 1;
    return 0;
}else
{
    for(int i=0 ; i<3; i++){
        if(a[k][i]!=0&&tag!=1)
        {
            DFS(a[k][i],a);
        }
    }
}
    /**************end************/
}
int main()
{
	while(cin>>n)
	{
	if(n==0)break;
	int i,j;
	tag=0;
	int a[n+1][3];//迷宫
	for(i=1;i<=n;i++)
		for(j=0;j<3;j++)
			cin>> a[i][j];
	cin>>m;
	DFS(1,a);//从第一个编号开始搜索
	if(tag==1)
		cout<<"YES"<<endl;
	else if(tag==0)
		cout<<"NO"<<endl;
	}
	return 0;
}

这个问题可以使用深度优先搜索(DFS)或广度优先搜索(BFS)算法来解决。以下是DFS算法的实现思路: 首先,我们需要建立一个大小为n的邻接矩阵graph,用于保存每个节点的出度信息。graph[i][j]表示从节点i到节点j是否有连边。如果graph[i][j]=1,则表示节点i可以到达节点j。 然后,我们从起点开始进行DFS搜索。定义一个visited数组,用于保存每个节点是否已经被遍历。visited[i]取值为0或1,表示节点i是否已经被遍历。在DFS搜索中,我们从当前节点开始,遍历它能够到达的所有节点,如果遍历到终点m,则返回true,否则继续DFS搜索。 具体实现可以参考以下代码: ```python def DFS(graph, visited, cur, target): # 如果当前节点已经被访问过,则直接返回False if visited[cur]: return False # 如果当前节点是终点,则返回True if cur == target: return True # 标记当前节点已经被访问 visited[cur] = 1 # 遍历当前节点能够到达的所有节点 for i in range(len(graph)): if graph[cur][i] == 1: if DFS(graph, visited, i, target): return True # 如果当前节点无法到达终点,则返回False return False n = 6 m = 5 graph = [[0, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 1, 0, 1, 1, 0], [0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0]] visited = [0] * n if DFS(graph, visited, 0, m-1): print("可以逃出迷宫!") else: print("无法逃出迷宫!") ``` 输出结果为: ``` 可以逃出迷宫! ``` 这个算法的时间复杂度为O(n^2),因为我们需要遍历所有的节点和边。如果使用BFS算法来解决这个问题,时间复杂度为O(n+m),其中n是节点数,m是边数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迷疑.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值