目录
数据集
from torch.utils.data import Dataset
from PIL import Image
import os
class MyData(Dataset):
# root_dir train label_dir ants
def __init__(self, root_dir, label_dir):
self.root_dir = root_dir
self.label_dir = label_dir
# self.path=...train/ants
self.path = os.path.join(self.root_dir, self.label_dir)
# self.img_path 每一个图片
self.img_path = os.listdir(self.path)
def __getitem__(self, idx):
img_name = self.img_path[idx]
img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
img = Image.open(img_item_path)
label = self.label_dir
return img, label
def __len__(self):
return len(self.img_path)
root_dir = "hymenoptera_data/train"
ants_label_dir = "ants"
bees_label_dir="bees"
ants_dataset = MyData(root_dir, ants_label_dir)
bees_dataset=MyData(root_dir,bees_label_dir)
train_dataset=ants_dataset+bees_dataset
需要np类型,图片需要转换
图片阶段
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer = SummaryWriter("logs")
image_path = "hymenoptera_data/train/ants/6240338_93729615ec.jpg"
img = Image.open(image_path)
img_array = np.array(img)
print(type(img_array))
print(img_array.shape)
# y=x
writer.add_image("test", img_array, 2, dataformats='HWC')
for i in range(100):
writer.add_scalar("y=2x", i * 2, i)
writer.close()
终端输入 ,可以使用tensorboard
tensorboard --logdir logs
command+p查看输入参数
什么是张量
tensor类型
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
# 通过transform.ToTensor去看两个问题
# 1、transforms该如何使用
# 2、为什么我们需要Tensor数据类型
img_path = "hymenoptera_data/train/bees/21399619_3e61e5bb6f.jpg"
img = Image.open(img_path)
writer = SummaryWriter("logs")
tensor_trans = transforms.ToTensor()
tensor_img = tensor_trans(img)
writer.add_image("tensor_img", tensor_img)
writer.close()
常用方法,裁剪归一化啥的
from PIL import Image
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
writer = SummaryWriter("logs2")
img = Image.open("hymenoptera_data/train/bees/21399619_3e61e5bb6f.jpg")
# ToTensor
trans_totensor = transforms.ToTensor()
img_tensor = trans_totensor(img)
writer.add_image("ToTensor", img_tensor)
# Normalize
print(img_tensor[0][0][0])
trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
img_norm = trans_norm(img_tensor)
print(img_norm[0][0][0])
writer.add_image("Normalize", img_norm)
# Resize
print(img.size)
trans_resize=transforms.Resize((512,512))
# img PIL -> resize -> img_resize PIL
img_resize=trans_resize(img)
# img_resize PIL -> totensor ->img_resize tensor
img_resize=trans_totensor(img_resize)
writer.add_image("Resize", img_resize,0)
print(img_resize)
# Compose -resize -2
trans_resize_2=transforms.Resize(512)
# PIL -> PIL -> tensor
trans_compose=transforms.Compose([trans_resize_2,trans_totensor])
img_resize_2=trans_compose(img)
writer.add_image("Resize",img_resize_2,1)
# RandomCrop 随机裁剪
trans_random=transforms.RandomCrop(256)
trans_compose_2=transforms.Compose([trans_random,trans_totensor])
for i in range(10):
img_crop=trans_compose_2(img)
writer.add_image("RandomCrop",img_crop,i)
writer.close()
加载官网数据集
import torchvision
from torch.utils.tensorboard import SummaryWriter
dataset_transform = torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
])
train_set = torchvision.datasets.CIFAR10(root="./downloadDataset",
train=True,
transform=dataset_transform,
download=True
)
test_set = torchvision.datasets.CIFAR10(root="./downloadDataset",
train=False,
transform=dataset_transform,
download=False
)
# img,target=test_set[0]
# print(test_set[0])
# print(test_set.classes)
# print(target)
# img.show()
writer = SummaryWriter("cifar10")
for i in range(10):
img, target = test_set[i]
writer.add_image("test_test", img, i)
writer.close()
dataloader
卷积神经
import torch
import torch.nn.functional as F
input = torch.tensor([
[1, 2, 0, 3, 1],
[0, 1, 2, 3, 1],
[1, 2, 1, 0, 0],
[5, 2, 3, 1, 1],
[2, 1, 0, 1, 1]
])
kernel = torch.tensor([
[1, 2, 1],
[0, 1, 0],
[2, 1, 0]
])
input = torch.reshape(input, (1, 1, 5, 5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))
print(input.shape)
print(kernel.shape)
# stride步长 padding=1周围填充
output = F.conv2d(input, kernel, stride=1)
print(output)
padding=1
卷积核使用小案例
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./downloadDataset", train=False,
transform=torchvision.transforms.ToTensor(),
download=True
)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
# out是in倍数关系
self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
def forward(self, x):
x = self.conv1(x)
return x
tudui = Tudui()
writer = SummaryWriter("./08logs")
step = 0
for data in dataloader:
imgs, targets = data
output = tudui(imgs)
print(imgs.shape)
print(output.shape)
output = torch.reshape(output, (-1, 3, 30, 30))
print(output.shape)
writer.add_images("09img", output, step)
step = step + 1
writer.close()
最大池化实现
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
dataset = torchvision.datasets.CIFAR10("./downloadDataset", train=False,
transform=torchvision.transforms.ToTensor(),
download=True
)
dataloader = DataLoader(dataset, batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
def forward(self, input):
output = self.maxpool1(input)
return output
tudui = Tudui()
writer = SummaryWriter("09logs_maxpool")
step = 0
for data in dataloader:
imgs, targets = data
writer.add_images("input", imgs, step)
output = tudui(imgs)
writer.add_images("output", output, step)
step = step + 1
writer.close()
神经网络(Loss+反向传播)
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Sequential
from torch.nn.modules.flatten import Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./downloadDataset", train=False,
transform=torchvision.transforms.ToTensor(),
download=True
)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss=nn.CrossEntropyLoss()
tudui = Tudui()
for data in dataloader:
imgs,targets=data
outputs=tudui(imgs)
result_loss=loss(outputs,targets)
result_loss.backward()
print(result_loss)
优化器,多epoch参数优化
import torch
import torchvision.datasets
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Linear, Sequential
from torch.nn.modules.flatten import Flatten
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset = torchvision.datasets.CIFAR10("./downloadDataset", train=False,
transform=torchvision.transforms.ToTensor(),
download=True
)
dataloader = DataLoader(dataset, batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss=nn.CrossEntropyLoss()
tudui = Tudui()
# 定义优化器
# params (iterable) – 待优化参数的iterable或者是定义了参数组的dict
# lr (float) – 学习率
# momentum (float, 可选) – 动量因子(默认:0)
# weight_decay (float, 可选) – 权重衰减(L2惩罚)(默认:0)
# dampening (float, 可选) – 动量的抑制因子(默认:0)
# nesterov (bool, 可选) – 使用Nesterov动量(默认:False)
optim=torch.optim.SGD(tudui.parameters(),lr=0.01)
for epoch in range(20):
running_loss=0.0
for data in dataloader:
imgs,targets=data
outputs=tudui(imgs)
result_loss=loss(outputs,targets)
# 优化器
optim.zero_grad()
# 需要梯度
result_loss.backward()
# 开始调优
optim.step()
running_loss=running_loss+result_loss
print(running_loss)
训练神经网络模型套路整合
train
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import *
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../downloadDataset",
train=True,
transform=torchvision.transforms.ToTensor(),
download=False
)
test_data = torchvision.datasets.CIFAR10("../downloadDataset",
train=False,
transform=torchvision.transforms.ToTensor(),
download=False
)
# length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
# 利用dataloader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建神经网络
tudui = Tudui()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learning_rate = 0.01
optimize = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的论数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("./logs_train")
for i in range(epoch):
print("---------第{}轮训练开始----------".format(i + 1))
# 训练步骤
for data in train_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimize.zero_grad()
loss.backward()
optimize.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},Loss:{}".format(total_train_step, loss))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss
accuracy = (outputs.argmax(1) == targets).sum()
accuracy=accuracy.item()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_loss)
total_test_step = total_test_step + 1
torch.save(tudui, "tudui_{}.pth".format(i))
print("模型已保存")
writer.close()
model
import torch
# 准备数据集
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Linear
from torch.nn.modules.flatten import Flatten
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
tudui = Tudui()
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
gpu训练
代码相比于上面进行了微调
import time
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from model import *
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Linear
from torch.nn.modules.flatten import Flatten
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../downloadDataset",
train=True,
transform=torchvision.transforms.ToTensor(),
download=False
)
test_data = torchvision.datasets.CIFAR10("../downloadDataset",
train=False,
transform=torchvision.transforms.ToTensor(),
download=False
)
# length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
# 利用dataloader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建神经网络
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
tudui = Tudui()
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
tudui = Tudui()
if torch.cuda.is_available():
tudui = tudui.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 优化器
learning_rate = 0.01
optimize = torch.optim.SGD(tudui.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的论数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("./logs_train")
for i in range(epoch):
start_time=time.time()
print("---------第{}轮训练开始----------".format(i + 1))
# 训练步骤
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimize.zero_grad()
loss.backward()
optimize.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time=time.time()
print("耗时{}".format(end_time-start_time))
print("训练次数:{},Loss:{}".format(total_train_step, loss))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss
accuracy = (outputs.argmax(1) == targets).sum()
accuracy = accuracy.item()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "tudui_{}.pth".format(i))
print("模型已保存")
writer.close()
训练模型测试环节
test
import torchvision.transforms
from PIL import Image
import torch
# 准备数据集
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Linear
from torch.nn.modules.flatten import Flatten
image_path="./images/dog.jpeg"
image=Image.open(image_path)
print(image)
transform=torchvision.transforms.Compose(
[
torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor()
]
)
image=transform(image)
print(image.shape)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
if __name__ == '__main__':
tudui = Tudui()
input = torch.ones((64, 3, 32, 32))
output = tudui(input)
print(output.shape)
model=torch.load("tudui_4.pth")
image=torch.reshape(image,(1,3,32,32))
model.eval()
with torch.no_grad():
output=model(image)
print(output)
print(output.argmax(1))