从0开始学实证分析方法与stata步骤(一)

一、学习目标

  • 掌握实证分析的基本步骤
  • 学习实证分析必要的stata代码
  • 完成毕业论文

二、学习资料

《计量经济学及stata应用》课程教材,b站up主(@小周同学_慢慢学)小周老师讲得特别好,思路特别清晰,本篇为课程笔记记录,更多细节和内容希望大家移步b站听小周老师视频~

三、描述性统计

  • 什么时候做描述性统计

 数据处理好之后,每一次检验后都可以做描述性统计,让自己对数据基本情况有所了解。特别建议在数据处理好后,对解释变量x和被解释变量y做一次简单的线性回归,判断x和y的关系是否和理论预测的一致,以便及时发现问题。

给读者呈现的描述性统计结果建议在所有检验完成后做。

  • 描述性统计的内容

(1)变量的样本数(n),平均值(mean),标准差(sd), 最大值(max),最小值(min), 中位数,25%分位数,75%分位数等。

(2)变量的相关性分析

  • 描述性统计的stata代码

(1)tabstat

sys data #调用data数据

tabstat price emp pay #对price, emp, pay进行描述性统计

tabstat

Stata种统计分析软件,用于进行实证分析。其实证分析步骤大致如下: 1. 数据准备:将原始数据导入Stata中,并进行数据清洗和预处理。常用的命令有`import`、`generate`、`drop`等。可以利用`describe`命令查看数据的基本信息。 2. 描述性统计分析:对数据进行描述性统计分析,包括计算变量的均值、标准差、最大值、最小值等。常用的命令有`summarize`、`tabulate`、`describe`等。 3. 单变量分析:对每个变量进行单变量分析,主要包括计算频数分布、制作频数直方图、绘制箱线图等。常用的命令有`tabulate`、`histogram`、`boxplot`等。 4. 双变量分析:探索两个变量之间的关系,包括计算相关系数、制作散点图、绘制分组柱状图等。常用的命令有`correlate`、`scatter`、`bar`等。 5. 多变量分析:通过多元回归或方差分析等方法,研究多个自变量对因变量的影响,控制其他变量的影响。常用的命令有`regress`、`anova`等。 6. 模型诊断检验:对模型进行诊断和检验,包括验证回归模型的假设是否成立、检验残差的正态性、异方差性等。常用的命令有`regress`后加`e`,如`predict`、`estat`等。 7. 结果展示:将分析结果进行统计描述、绘制图表,并进行结果解读。常用的命令有`regress`、`table`、`graph`等。 需要注意的是,以上仅为实证分析步骤和命令示例,并非详尽无遗。实际实证分析步骤和命令选择会因具体研究问题和数据特征而异,使用者需要根据实际情况进行进步的调整和灵活运用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值