自蒸馏技术在语言模型微调中的桥梁作用

这篇论文的标题是《Self-Distillation Bridges Distribution Gap in Language Model Fine-Tuning》,作者们探讨了在对大型语言模型(LLMs)进行微调(fine-tuning)以适应特定任务时遇到的挑战,尤其是如何在提升任务性能的同时保留模型的通用指令遵循能力。论文提出了一种新颖的微调方法——自蒸馏微调(Self-Distillation Fine-Tuning,简称SDFT)旨在通过引导微调过程使用模型自身生成的、与其原始分布相匹配的蒸馏数据集来弥合任务数据集和LLMs之间的分布差异

摘要(Abstract)

  • 大型语言模型(LLMs)在自然语言处理(NLP)领域取得了突破性进展,但微调这些模型以适应特定任务时,常常难以平衡性能和保持通用指令遵循能力。在本文中,认为任务数据集和LLM之间的分布差距是主要原因。
  • 论文提出自蒸馏微调(SDFT)方法,通过模型自身生成的数据集来指导微调,以减少灾难性遗忘(catastrophic forgetting)并保持模型的有用性和安全性。

重写后的response错了怎么办?文章使用了一个简单的策略。对比原本的response和重写后的response中的答案部分,如果不同就仍然使用原本的response。比如,在math reasoning问题上,可以用正则表达式从response中抽取最终的答案,然后比较重写前后的答案是否相同。

  • 实验结果表明SDFT在多个基准测试中有效,与普通微调相比,SDFT在下游任务上取得了可比或更优越的性能。

引言(Introduction)

  • 介绍了大型语言模型(如GPT-3和PaLM)的发展背景和它们在预训练阶段使用大量文本语料库的能力。
  • 提出了监督微调(Supervised Fine-Tuning,SFT)的概念,以及它在提高模型指令遵循能力方面的潜力。
  • 讨论了SFT可能导致的灾难性遗忘问题,以及如何通过SDFT来解决这一问题。

相关工作(Related Work)

  • 讨论了微调在不同领域的应用,以及持续学习(Continual Learning)领域的相关研究,这些研究旨在减少在适应新数据分布时对旧知识的遗忘。
  • 强调了大型语言模型在生成内容时可能带来的安全问题,并提出了一些对齐策略来确保模型遵循人类伦理标准。

方法(Method)

  • 详细描述了微调LLMs的过程,以及SDFT方法的具体实现细节。
  • 介绍了自蒸馏模板(Distillation Template)的设计和应用,这是一种任务独立的模板,可以跨不同任务使用。

1392cd2ee9df49eda0c209f008f663bd.png

实验(Experiments)

  • 描述了实验设置,包括使用的种子模型(Llama-2-7b-chat)和数据集。
  • 展示了SDFT在多个下游任务上的性能,并与普通微调进行了比较。

1d420d8e82da495da2e6fcb8cc81897c.png

  • 评估了两种方法对模型安全性、一般知识和有用性的影响。

7562fa03968e40ef880af66c90641548.png

分析(Analysis)

  • 对分布偏移和灾难性遗忘之间的关系进行了深入分析,并使用补充指标来评估分布偏移的程度。
  • 微调数据规模的影响:数据越多,模型的分布改变越大,下降越明显。
  • 混合原本的数据集和重写后的数据集:重写数据集比例越大,越能缓解性能的下降。
  • Llama-2-13B、Llama-3-8B上的实验:结论差不多。

结论和局限性(Conclusions and Limitations)

  • 总结了SDFT方法在减少灾难性遗忘和保持模型广泛能力方面的优势。
  • 讨论了研究的局限性,包括计算资源的限制和安全评估的范围。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OptimaAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值