大数据项目之电商推荐系统设计与实现

该文介绍了使用Java、Scala和Web前端技术构建的电商推荐系统,依托Spark和MongoDB,实现了基于ALS的隐语义模型和协同过滤算法。系统包含首页、热门推荐、离线推荐等功能,支持用户登录注册、商品评价等交互,适用于电商或电影推荐场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据项目之电商推荐系统设计与实现
大数据推荐系统
可改电影推荐系统等推荐系统噢
可以直接下载运行
可以私聊我根据需求更改商品信息以及图片背景噢
基于Spark的商品推荐系统
环境是Linux➕idea噢
【技术栈】java+ scala + web前端+spark➕MongoDB等
【算法】基于ALS的隐语义模型,基于内容的协同过滤推荐算法,离线推荐算法
【功能】首页,热门推荐,离线推荐,冷启动推荐,商品分类与索引,用户登录注册,商品评价打分,查看评价记录,商品详情介绍等

工程量足,远程操控实现登录页面,可供数据和代码测试推荐效果,私我~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值