数值分析笔记(考试极简版附教程视频链接)

所用教材为金一庆-数值方法(第2版)
此笔记仅作为本科生通过考试用,可能存在诸多错误
可能部分公式语法CSDN并不支持、图床会被干掉,在此提供原文件及教材电子书链接:
https://pan.baidu.com/s/1aImCQ_btVS6KiMRHqyB13A
提取码:zyop

误差

第一题

image-20220924232308612

直接带入计算,观察 y n + 1 、 y n 、 y n − 1 y_{n+1}、y_{n}、y_{n-1} yn+1ynyn1的关系,判断以该公式计算是否稳定

image-20220924225646620

image-20220924225654960

第三题

image-20220924232344070

对应原书中内容:1.3 函数的误差估计

函数套函数的类型,将两层函数分别表示出后:

  • 计算出第二层函数的值,计算出 y ∗ y^* y后,确定出 ∣ E ( y ) ∣ |E(y)| E(y)的位数
  • 不知道算出的 z ∗ z^* z有什么用
  • 计算出导数的绝对值 ∣ z ′ ∣ |z'| z
  • 计算出 ∣ E ( z ) ∣ = ∣ z ′ ∣ ∣ E ( y ) ∣ |E(z)| = |z'||E(y)| E(z)=zE(y)的值,作为误差的判别标准

image-20220924232355967

image-20220924232400779

第五题

image-20220924232417210

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dGCComn0-1670933047241)(null)]

对应原书中内容:1.4 近似数的四则运算及数值计算中需注意的几个问题

尽量避免:

  • 加减运算:
    • 避免两个绝对值差不多的数相互抵消
    • 不要把绝对值差异很大的数做加减法
  • 乘除运算:
    • 避免除数接近于0
  • 舍入误差的积累:
    • 减少运算次数
    • 简化步骤

第六题

image-20220924232145430

image-20220924232453670

image-20220924232459419

第十题

image-20220924232550199

对应原书中内容:2.1.1 多项式

秦九韶算法

image-20220924232601806

非线性方程求根

多项式及代数方程根的界

笛卡尔符号法则

image-20220925093328108

正根上界

image-20220925093435667

二分法

估计二分法的执行次数 K K K

image-20220925093602315

其中:

  • b − a b-a ba为最初的两个点的值
  • ϵ \epsilon ϵ为指定出的精度,如精确到小数点后一位为 0.5 × 1 0 − 1 0.5\times10^{-1} 0.5×101
  • 其他部分为固定数值

由于最初选定的两个点的不同, K K K的值会有变化

或者:
b − a 2 K < ϵ \frac{b-a}{2^K} < \epsilon 2Kba<ϵ

例题

image-20220925094451874

使用笛卡尔符号规则:

image-20220925094520224

由序列 { 1 、 − 1 、 − 1 } \{1、-1、-1\} {111}可知变号1次,无法少一个正偶数,则必定有一个正根

由序列 { 1 、 1 、 − 1 } \{1、1、-1\} {111}可知变号1次,无法少一个正偶数,则必定有一个负根

使用正根上界:

image-20220925094541924

估算 K K K值:

image-20220925094631336

image-20220925094659516

这里发生了错误,根据原题目中例子这里取了 b − a = 2 b-a = 2 ba=2,则计算出的 K K K应为6

在得知计算次数为6次后,列表计算:

a a a b b b x = ( a + b ) / 2 x=(a+b)/2 x=(a+b)/2 f ( a ) f(a) f(a) f ( b ) f(b) f(b) f ( x ) f(x) f(x)
021-11-1
121.5-11-0.25
1.521.75-0.2510.3125
1.51.751.625-0.250.31250.015625
1.51.6251.5625-0.250.015625-0.121094
1.56251.6251.59375

其中保留的是与 f ( x ) f(x) f(x)异号的一项再次进行迭代计算

第六次计算出的区间的中位数即通过二分法估算出的方程的解

简单迭代法

等价方程

image-20220925101208328

等价方程不止一种形式

收敛性

image-20220925101324832

根据等价方程的导数在可行域的绝对值判断其是否收敛:

  • ∣ g ′ ( x ∗ ) ∣ < 1 |g'(x^*)| < 1 g(x)<1,迭代法收敛
  • ∣ g ′ ( x ∗ ) ∣ > 1 |g'(x^*)| > 1 g(x)>1,迭代法发散

与二分法的对比

image-20220925102015922

L L L为渐进收敛因子

例题

image-20220925104844805

image-20220925104851588

image-20220925104858482

image-20220925104904767

image-20220925104910236

image-20220925104917937

收敛时需要保证:

  • 对于选取的等价方程需要满足于特定作用域,方法为证明其单调性,并通过极值判断出取值范围
  • 保证等价方程的导数的绝对值小于1

关于如何确定范围:

image-20220925105332994

第一题图像如图所示

image-20220925105407119

第二题图像如图所示

选取区间时只需要大概地判断出即可

牛顿法

计算步骤

image-20220925144625058

只需要记住牛顿法的迭代公式即可
x k + 1 = x k − f ( x k ) f ′ ( x k ) x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} xk+1=xkf(xk)f(xk)

例题

image-20220925144818203

image-20220925144824108

根据公式计算出公式后直接计算即可

image-20220925144954123

只要出现结果停止变化的情况就可以停止计算

收敛性判断

image-20220925151225176

满足以上几点就可以证明收敛

例题

image-20220925151327707

image-20220925151338363

解线性方程组的直接法

【计算方法】零基础入门矩阵1(第五期)矩阵消去法 全主元 列主元 三角分解 LU分解 PLU分解_哔哩哔哩_bilibili

高斯消元法

全主元法

image-20220925170235267

  • 从A中选取绝对值最大的数作为主元
  • 交换行列,让主元位于 a 11 a_{11} a11位置,这步可以忽略
  • 消元计算
  • 在A中的第N-K+1行、列选取下一个主元,选取标准为这些数的最大值,且不与之前的主元处于同一行
    • N:总行数
    • K:消元次数
  • 交换行列,让主元位于 a 11 a_{11} a11位置,这步可以忽略
  • 重复消元计算,直到所有行都存在主元

列主元法

image-20220925170706166

与全主元法规则类似,只是主元的选取标准改变为从每一列中选取一个

三角分解法

道立特分解法

【计算方法】零基础入门矩阵1(第五期)矩阵消去法 全主元 列主元 三角分解 LU分解 PLU分解_哔哩哔哩_bilibili

【数值分析】矩阵LU三角分解| 速成讲解 考试宝典_哔哩哔哩_bilibili

需要将方程组表示为矩阵的形式后

将A分解为L和U的形式,A=LU,其中L是单位下三角矩阵,主对角线全为1,U是上三角矩阵

image-20220925190238424

首先按照消元法求出U,后根据求取U时的列向量减系数填补出L

image-20220925190432168

对于 a 11 = 0 a_{11} = 0 a11=0的情况,需要进行PLU分解,即在A=LU的等式前左乘一个P,组成PA=LU

image-20220925190705927

根据分解出的LU列出UX=Y、LY=b的式子,后分别求取其中结果

平方根法公式求解

cholesky分解简单速成_哔哩哔哩_bilibili

对于正定矩阵:

  • 对称的
  • 特征值都大于0的

image-20220925190924785

将其分解为一个矩阵和其转置矩阵的乘积,其中对应的映射关系如图所示

image-20220925191130123

其计算方式是按来的

image-20220925191431039

其中对角线上的元素规律如图所示

image-20220925191457506

对角线元素下的元素规律如图所示

例题

image-20220925191224941

image-20220925191606471

求出 A = L T L A = L^TL A=LTL后,按照 L y = b Ly = b Ly=b L T x = y L^Tx = y LTx=y的式子求出最后 x x x的结果
{ L y = b L T x = y \begin{cases} Ly = b \\ L^Tx = y \\ \end{cases} {Ly=bLTx=y

平方根法

【数值分析】矩阵三角分解|速成平方根法和追赶法 解线性方程组_哔哩哔哩_bilibili

image-20220925203039218

A=LU在A是正定矩阵的情况下具有如上性质:可将U表示为 D L T DL^T DLT

image-20220925203753719

计算时首先分解为A=LU的形式再转变为A= L D L T LDL^T LDLT的形式

其中:

  • L不变直接照抄
  • D的主对角线元素等同于U的主对角线元素
  • L转置得到 L T L^T LT

之后按照正常方法求解,公式略有变化
{ L y = b D L T x = y \begin{cases} Ly = b \\ DL^Tx = y \\ \end{cases} {Ly=bDLTx=y
image-20220925204052092

计算时可将两边同时左乘一个D的逆,将D移到等式右边运算,简化计算

追赶法

【数值分析】矩阵三角分解|速成平方根法和追赶法 解线性方程组_哔哩哔哩_bilibili

image-20220925204231441

对形如这样的三对角线方程组,采用追赶法计算

  • 首先根据公式得出L的 a 11 a_{11} a11和下方的一条斜对角线
  • 依次计算图中的 β 1 \beta_1 β1 α 2 \alpha_2 α2 β 2 \beta_2 β2 α 3 \alpha_3 α3等等

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zZgCtpbD-1670933047330)(null)]

将结果依次求出,其中:

  • − 1 2 = 2 ÷ − 1 -\frac{1}{2} = 2 \div -1 21=2÷1
  • 3 2 = 2 − ( − 1 ) × ( − 1 2 ) \frac{3}{2} = 2 - (-1) \times (-\frac{1}{2}) 23=2(1)×(21)
  • − 2 3 = − 1 ÷ 3 2 -\frac{2}{3} = -1 \div \frac{3}{2} 32=1÷23

规律为:

  • L中的未知量,即主对角线元素,为A中同位置元素,减去L中左方元素和左上方元素的乘积
  • U中的未知量,即主对角线上的对角线元素,为A中同位置元素,除以L中同位置的左方元素,也是上一步求得的结果

算出L和U以后,按照常规方法求出未知数
{ L y = b L T x = y \begin{cases} Ly = b \\ L^Tx = y \\ \end{cases} {Ly=bLTx=y

解线性方程组的迭代法

向量和矩阵的范数

数值分析 范数与条件数 期末干货 期末突击_哔哩哔哩_bilibili

矩阵论(第五章)向量,矩阵的范数-期末快速复习_哔哩哔哩_bilibili

数值分析 计算矩阵特征值及谱半径 保姆教程_哔哩哔哩_bilibili

向量范数

image-20220926145442316

矩阵范数

$

谱半径

谱半径 f ( A ) f(A) f(A)为矩阵的特征值的绝对值的最大值

小结

image-20220926145806381

image-20220926150448690

线性方程组的误差分析

条件数

数值分析 范数与条件数 期末干货 期末突击_哔哩哔哩_bilibili

image-20220926150558219

条件数 c o n d ( A ) x cond(A)_x cond(A)x对应了范数 ∣ ∣ A ∣ ∣ x ∣ ∣ A x − 1 ∣ ∣ ||A||_x||A^{-1}_x|| AxAx1的乘积

矩阵求逆

上图中逆矩阵结果错误

二阶矩阵求逆可参考下面的公式

img

更高阶的求逆法:求逆矩阵的三种方法 - 哔哩哔哩 (bilibili.com)

雅各比方法和高斯-赛德尔方法

【数值分析】速成!雅可比迭代|高斯赛德尔迭代_哔哩哔哩_bilibili

数值分析|雅可比和高斯迭代|期末干货|期末突击_哔哩哔哩_bilibili

雅各比方法

image-20221009195103098

将给定的矩阵A拆解为 B = − D − 1 ( L + U ) B = -D^{-1}(L+U) B=D1(L+U),求解出 B B B判断收敛:

  • 对角线绝对占优,充分非必要
  • 谱半径小于1
    • 矩阵的特征值的最大的绝对值一项

高斯-赛德尔方法

image-20221009195142372

将给定的矩阵A拆解为 G = − ( L + D ) − 1 U G = -(L+D)^{-1}U G=(L+D)1U,求解出 G G G判断收敛:

  • 谱半径小于1
    • 矩阵的特征值的最大的绝对值一项

求矩阵的特征值性质与归纳

(18条消息) 行列式的计算方法(含四种,看完就会!)_肖前辉爱吃烧茄子的博客-CSDN博客_行列式的计算方法

  • 特征值之和等于矩阵的迹,即主对角线之和

  • 对形如

    • $$
      \left|
      \matrix{
      \lambda & -\frac{a}{n} & -\frac{b}{n} \
      \frac{a}{n} & \lambda & -\frac{c}{n} \
      \frac{b}{n} & \frac{c}{n} & \lambda \

      }
      \right|
      \Longrightarrow
      \lambda(\lambda^{2} + \frac{a^2 + b^2 + c2}{n2})=0
      $$

插值法

数值分析02-牛顿插值多项式(例题)Newton_哔哩哔哩_bilibili

数值分析01-拉格朗日插值多项式及其余项(例题)Lagrange_哔哩哔哩_bilibili

牛顿插值多项式

公式

N n ( x ) = y 0 + c 1 ( x − x 0 ) + c 2 ( x − x 0 ) ( x − x 1 ) + c 3 ( x − x 0 ) ( x − x 1 ) ( x − x 2 ) + . . . N_n(x) = y_0 + c_1(x-x_0) + c_2(x-x_0)(x-x_1) + c_3(x-x_0)(x-x_1)(x-x_2) + ... Nn(x)=y0+c1(xx0)+c2(xx0)(xx1)+c3(xx0)(xx1)(xx2)+...

其中 c n c_n cn为差商

差商表

  • 1,1
  • 2,4
  • 3,7
  • 4,8

根据所给定数表求取差商表的过程:

k k k x k x_k xk f ( x k ) f(x_k) f(xk) c 1 c_1 c1 c 2 c_2 c2 c 3 c_3 c3
011
124 4 − 1 2 − 1 = 3 \frac{4-1}{2-1}=3 2141=3
237 7 − 4 3 − 2 = 3 \frac{7-4}{3-2}=3 3274=3 3 − 3 3 − 1 = 0 \frac{3-3}{3-1}=0 3133=0
348 8 − 7 4 − 3 = 1 \frac{8-7}{4-3}=1 4387=1 1 − 3 4 − 2 = − 1 \frac{1-3}{4-2}=-1 4213=1 0 + 1 4 − 1 = 1 3 \frac{0+1}{4-1}=\frac{1}{3} 410+1=31

其中 c x c_x cx的值为表中每列第一个元素,在这里分别为3,0,1/3

由此就可求多次牛顿差值多项式了

拉格朗日插值多项式

公式

以一次为例:
L 1 ( X ) = l 0 ( x ) y 0 + l 1 ( x ) y 1 = ( x − x 1 ) ( x 0 − x 1 ) y 0 + ( x − x 0 ) ( x 1 − x 0 ) y 1 \begin{aligned} L_1(X) &= l_0(x)y_0 + l_1(x)y_1 \\ &= \frac{(x-x_1)}{(x_0-x_1)}y_0 + \frac{(x-x_0)}{(x_1-x_0)}y_1 \end{aligned} L1(X)=l0(x)y0+l1(x)y1=(x0x1)(xx1)y0+(x1x0)(xx0)y1
以二次为例:
L 2 ( X ) = l 0 ( x ) y 0 + l 1 ( x ) y 1 + l 2 ( x ) y 2 = ( x − x 1 ) ( x − x 2 ) ( x 0 − x 1 ) ( x 0 − x 2 ) y 0 + ( x − x 0 ) ( x − x 2 ) ( x 1 − x 0 ) ( x 1 − x 2 ) y 1 + ( x − x 0 ) ( x − x 1 ) ( x 2 − x 0 ) ( x 2 − x 1 ) y 2 \begin{aligned} L_2(X) &= l_0(x)y_0 + l_1(x)y_1 + l_2(x)y_2 \\ &= \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2 \end{aligned} L2(X)=l0(x)y0+l1(x)y1+l2(x)y2=(x0x1)(x0x2)(xx1)(xx2)y0+(x1x0)(x1x2)(xx0)(xx2)y1+(x2x0)(x2x1)(xx0)(xx1)y2

插值多项式的误差/插值余项

无论是牛顿插值多项式还是拉格朗日插值多项式都存在误差,设其为 P n ( x ) P_n(x) Pn(x),则对于插值余项 R n ( x ) R_n(x) Rn(x)
R n ( x ) = f ( x ) − P n ( x ) = f n + 1 ( ε ) ( n + 1 ) ! W n + 1 ( x ) \begin{aligned} R_n(x) &= f(x) - P_n(x)\\ &= \frac{f^{n+1}(\varepsilon)}{(n+1)!}W_{n+1}(x) \end{aligned} Rn(x)=f(x)Pn(x)=(n+1)!fn+1(ε)Wn+1(x)
其中
W n + 1 ( x ) = ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) W_{n+1}(x) = (x-x_0)(x-x_1)...(x-x_n) Wn+1(x)=(xx0)(xx1)...(xxn)
也可表示为:

∣ R n ( x ) ∣ ≤ M n + 1 ( n + 1 ) ! W n + 1 ( x ) \begin{aligned} |R_n(x)| &\leq \frac{M_{n+1}}{(n+1)!}W_{n+1}(x) \end{aligned} Rn(x)(n+1)!Mn+1Wn+1(x)

其中
M n + 1 = m a x ∣ f n + 1 ( x ) ∣ , x 0 ≤ x ≤ x n M_{n+1} = max|f^{n+1}(x)|,x_0 \leq x \leq x_n Mn+1=maxfn+1(x),x0xxn
写题使用第二种方法,通过函数的特定次导数的最大绝对值求取插值余项

image-20221009213831764

差商与导数之间的关系

image-20221009214742097

则可知使用五个点时就可得到完全精确的插值多项式了

如若导数中存在未知量 x x x,则可用之前的方法计算差商

曲线拟合与函数逼近

曲线拟合的最小二乘法

三种求解方法

做题一般以法三适用性最强

法一:

X123
Y5916

进行最小二乘法拟合的一次多项式

p ( x ) = a x + b p(x)=ax+b p(x)=ax+b,则
S = ∑ i = 1 3 [ p ( x i ) − y i ] 2 = ( a + b − 5 ) 2 + ( 2 a + b − 9 ) 2 + ( 3 a + b − 16 ) 2 \begin{aligned} S &= \sum_{i=1}^{3}[p(x_i)-y_i]^2\\ &= (a+b-5)^2 + (2a+b-9)^2 + (3a+b-16)^2 \end{aligned} S=i=13[p(xi)yi]2=(a+b5)2+(2a+b9)2+(3a+b16)2
之后通过偏导为0求取 a 、 b a、b ab

{ δ S δ a = 0 δ S δ b = 0 \begin{cases} \frac{\delta S}{\delta a} = 0 \\ \frac{\delta S}{\delta b} = 0 \end{cases} {δaδS=0δbδS=0
法二:

image-20221010005703785

法三

数值分析【题型六】最小二乘法求拟合曲线,均方误差的例题详解_哔哩哔哩_bilibili

image-20221010013215792

使用公式:
$$
\left[
\matrix
{
(\phi_0,\phi_0) & (\phi_0,\phi_1)\
(\phi_1,\phi_0) & (\phi_1,\phi_1)
}
\right]
\left[
\matrix
{
a_0\
a_1
}
\right]

\left[
\matrix
{
(f,\phi_0)\
(f,\phi_1)
}
\right]
$$
其中

  • ϕ 0 、 ϕ 1 \phi_0、\phi_1 ϕ0ϕ1对应 x i x_i xi的0、1次方
  • f f f对应 y i y_i yi
  • a i a_i ai为系数,即分别为 b 、 a b、a ba a 0 a_0 a0为常数项, a 1 a_1 a1为x一次项
  • 内积的求取方式为对应位置元素乘积后求和

计算二次的拟合时:
$$
\left[
\matrix
{
(\phi_0,\phi_0) & (\phi_0,\phi_1) & (\phi_0,\phi_2)\
(\phi_1,\phi_0) & (\phi_1,\phi_1) & (\phi_1,\phi_2)\
(\phi_2,\phi_0) & (\phi_2,\phi_1) & (\phi_2,\phi_2)
}
\right]
\left[
\matrix
{
a_0\
a_1\
a_2
}
\right]

\left[
\matrix
{
(f,\phi_0)\
(f,\phi_1)\
(f,\phi_2)
}
\right]
$$

这样求出来的 a 2 a_2 a2是二次项的系数

虽然都是离散的数据点,但有些点可能是多次测量的,那么就需要提高它在拟合时的占比

image-20221010010033655

对于第三行的 w i w_i wi,即为权

image-20221010010059171

在构造矛盾方程组时,只需要等式两边同时乘上 w i \sqrt{w_i} wi ,之后正常计算即可

用正交函数作最小二乘拟合

(不知所云

求解方法

有递推公式:
p 0 ( x ) = 1 p 1 ( x ) = ( x − α 1 ) p 0 ( x ) p k + 1 ( x ) = ( x − α k + 1 ) p k ( x ) − β k p k − 1 ( x ) \begin{aligned} &p_0(x) = 1\\ &p_1(x) = (x-\alpha_1)p_0(x)\\ &p_{k+1}(x) = (x-\alpha_{k+1})p_k(x)-\beta_kp_{k-1}(x) \end{aligned} p0(x)=1p1(x)=(xα1)p0(x)pk+1(x)=(xαk+1)pk(x)βkpk1(x)
由正交性可定义:
α k + 1 = ( x p k , p k ) ( p k , p k ) β k = ( x p k , p k − 1 ) ( p k − 1 , p k − 1 ) c k = ( f , p i − 1 ) ( p i − 1 , p i − 1 ) \begin{aligned} &\alpha_{k+1} = \frac{(xp_k,p_k)}{(p_k,p_k)}\\ &\beta_{k} = \frac{(xp_k,p_{k-1})}{(p_{k-1},p_{k-1})}\\ &c_k = \frac{(f,p_{i-1})}{(p_{i-1},p_{i-1})} \end{aligned} αk+1=(pk,pk)(xpk,pk)βk=(pk1,pk1)(xpk,pk1)ck=(pi1,pi1)(f,pi1)

例题

image-20221010103219549

image-20221010103244891

数值积分

牛顿科茨公式

image-20221101154317134

梯形公式

对应到 n = 1 n = 1 n=1的情况

计算余项时可将高阶导数部分近似为0次幂的形式,算出误差的确界

辛普森公式

对应到 n = 2 n = 2 n=2的情况

计算余项时可将高阶导数部分近似为0次幂的形式,算出误差的确界

例题

image-20221101163227027

image-20221101163156236

求积公式的代数精度

image-20221101163318470

image-20221101163324668

从0次幂开始依次带入左右两边,直到算出最后一个两边相等的结果

例题

image-20221101163535374

image-20221101163551592

  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值