数值分析笔记_3 埃尔米特插值

本文介绍了埃尔米特插值的概念,特别是2阶密切多项式,用于保证插值点处的导数和函数值与原函数相同。通过构造正交基和拉格朗日插值因子,详细阐述了2阶Hermite插值多项式的形成过程。虽然Hermite插值因数据需求高和计算复杂而不常用,但其展示了处理数据和多项式构造的思路。
摘要由CSDN通过智能技术生成

埃尔米特插值

本文内容完全原创,严禁抄袭。

我们知道,线性插值思想在于利用n个零点解出唯一的n维多项式映射,这种方法保证了曲线的连续性但是不能保证其平滑性,例如拉格朗日插值多项式在高次情况下容易出现的抖动问题正反映了它的导数与原曲线差别是很大的。在一些情况下我们需要限定拟合曲线的导数值也尽量接近原曲线,这时可以采用Hermite插值的方法。

现假设有一函数 f ∈ C [ a , b ] f\in C[a,b] fC[a,b],给出一系列探测点 { ( x 0 , f ( x 0 ) ) , ( x 0 , f ′ ( x 0 ) ) , ( x 0 , f ′ ′ ( x 0 ) ) , ⋯ ( x 0 , f m ( x 0 ) ) , } \{ (x_0,f(x_0)),(x_0,f\prime(x_0)),(x_0,f\prime\prime(x_0)),\cdots (x_0,f^{m}(x_0)), \} { (x0,f(x0)),(x0,f(x0)),(x0,f(x0)),(x0,fm(x0)),},我们可以写出它在 x 0 x_0 x0处的密切多项式:
P ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + ⋯ + f m ( x 0 ) m ! ( x − x 0 ) P(x)=f(x_0)+f\prime(x_0)(x-x_0)+\cdots+\frac{f^{m}(x_0)}{m!}(x-x_0) P(x)=f(x0)+f(x0)(xx0)++m!fm(x0)(xx0)

所谓密切多项式也就是说这一点处的n阶导数都是与原函数相同的。注意这只是在某一点处,如果有来自n个点的数据,能够得到的m值往往是不同的,我们用这一系列的点所构造的插值多项式必然要去满足最大m的插值多项式。

Hermite插值就是基于构造密切多项式的思想进行的,我们先看一下最常见的2阶密切多项式,它保证插值点处的导数和函数值都与原函数相同:

P ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( ξ ) ( x − x 0 ) 2 P(x)=f(x_0)+f\prime(x_0)(x-x_0)+f\prime\prime(\xi)(x-x_0)^2 P(x)=f(x0)+f(x0)(xx0)+f(ξ)(xx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值