随机变量的分布及其数字特征

随机变量:取值依赖于某个随机试验的结果,并由事件结果所确定的变量X(ω)为随机变量,简记X

随机变量基本特点:1.变异性:不同的试验结果可能取不同的值

                                 2.随机性:试验中出现的结果是随机的

离散型随机变量的概率分布

离散型随机变量:随机变量X只可能取有限个或至多可列个值

Pn={X=xn},n=1,2,....   是X的概率函数,又称为X的概率分布,简称分布

特性:1.Pn>=0           2.Pn的累加求和是1

两点分布:一般地,只取x1、x2两个可能值的随机变量其概率函数称为两点分布。

 如果x1=0,x2=1,得P{X=1}=p 、P{X=0}=q        称X服从参数为p的0-1分布(伯努利试验

连续型随机变量

随机变量X,如果存在一个非负可积的函数f(x),x取值范围是全体实数,对于任意两个数a,b(a<b)都有P{a<X<b}=∫(a,b)f(x)dx        

X:连续型随机变量        f(x)是X的概率分布密度函数,简称概率密度或分布密度( X ~ f(x)  )

基本性质:1.f(x)>=0          2.f(x)在实数范围内的积分是  1

随机变量的分布函数

F(x)=P{X <=x},x取值为全体实数      是随机变量X的分布函数

F(x)单调不减,取值范围[0,1]     xj接近负无穷时为0,接近正无穷时为1,至多有可列个间断点

右连续,即 F(x+0)=F (x)

当X不再是随机的,把它作为随机变量的退化情况,则P{X=c}=1   为退化分布

如果一个随机变量X的分布函数图形呈阶梯状,则它是一个离散型随机变量,且X在每一个跳跃点x处具有正确概率,其概率正好是其跳跃高度。

常见的离散型分布:二项分布Y~B(n,p) 、超几何分布X~H(n,N1,N2)、泊松分布 X~P(λ)、几何分布X~g(n;p)、0-1分布

二项分布  在n重伯努利试验中,某件事件A发生的次数X的概率分布,成为二项分布。Y~B(n,p) 

超几何分布 一般的,如果有N个元素分两大类,第一类有N1个元素,第二类有N2个元素(N1+N2=N),采取不重复抽样,从N个元素中取n个不同元素,那么所取到的第一类元素个数X的分布称为超几何分布  X~H(n,N1,N2)

当N无穷大时,超几何分布是二项分布

 泊松分布    X~P(λ)

 成功率为p的n重伯努利试验,只要n充分大,而p充分小,则其成功次数X近似的服从λ=np的泊松分布

几何分布    无记忆性             X~g(n;p)        (常见事例:重复n次至试验至首次成功为止.......)

 常见地连续型分布 均匀分布X~U(a,b)、指数分布X~E(λ、正态分布  X~N(μ,σ^2)

均匀分布  X~U(a,b)

指数分布   X~E(λ)        无记忆性

其中λ>0,则称X服从λ的指数分布

正态分布          X~N(μ,σ^2)

                        特别的,当μ=0,σ=1时,服从标准正态分布

                        一般正态分布转为标准正态分布  (X-μ)/σ

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值