随机变量:取值依赖于某个随机试验的结果,并由事件结果所确定的变量X(ω)为随机变量,简记X
随机变量基本特点:1.变异性:不同的试验结果可能取不同的值
2.随机性:试验中出现的结果是随机的
离散型随机变量的概率分布
离散型随机变量:随机变量X只可能取有限个或至多可列个值
Pn={X=xn},n=1,2,.... 是X的概率函数,又称为X的概率分布,简称分布
特性:1.Pn>=0 2.Pn的累加求和是1
两点分布:一般地,只取x1、x2两个可能值的随机变量其概率函数称为两点分布。
如果x1=0,x2=1,得P{X=1}=p 、P{X=0}=q 称X服从参数为p的0-1分布(伯努利试验)
连续型随机变量
随机变量X,如果存在一个非负可积的函数f(x),x取值范围是全体实数,对于任意两个数a,b(a<b)都有P{a<X<b}=∫(a,b)f(x)dx
X:连续型随机变量 f(x)是X的概率分布密度函数,简称概率密度或分布密度( X ~ f(x) )
基本性质:1.f(x)>=0 2.f(x)在实数范围内的积分是 1
随机变量的分布函数
F(x)=P{X <=x},x取值为全体实数 是随机变量X的分布函数
F(x)单调不减,取值范围[0,1] xj接近负无穷时为0,接近正无穷时为1,至多有可列个间断点
右连续,即 F(x+0)=F (x)
当X不再是随机的,把它作为随机变量的退化情况,则P{X=c}=1 为退化分布
如果一个随机变量X的分布函数图形呈阶梯状,则它是一个离散型随机变量,且X在每一个跳跃点x处具有正确概率,其概率正好是其跳跃高度。
常见的离散型分布:二项分布Y~B(n,p) 、超几何分布X~H(n,N1,N2)、泊松分布 X~P(λ)、几何分布X~g(n;p)、0-1分布
二项分布 在n重伯努利试验中,某件事件A发生的次数X的概率分布,成为二项分布。Y~B(n,p)
超几何分布 一般的,如果有N个元素分两大类,第一类有N1个元素,第二类有N2个元素(N1+N2=N),采取不重复抽样,从N个元素中取n个不同元素,那么所取到的第一类元素个数X的分布称为超几何分布 X~H(n,N1,N2)
当N无穷大时,超几何分布是二项分布
泊松分布 X~P(λ)
成功率为p的n重伯努利试验,只要n充分大,而p充分小,则其成功次数X近似的服从λ=np的泊松分布
几何分布 无记忆性 X~g(n;p) (常见事例:重复n次至试验至首次成功为止.......)
常见地连续型分布 均匀分布X~U(a,b)、指数分布X~E(λ) 、正态分布 X~N(μ,σ^2)、
均匀分布 X~U(a,b)
指数分布 X~E(λ) 无记忆性
其中λ>0,则称X服从λ的指数分布
正态分布 X~N(μ,σ^2)
特别的,当μ=0,σ=1时,服从标准正态分布
一般正态分布转为标准正态分布 (X-μ)/σ