椭球体以大地体为基础建立
椭球定位:地球椭球体的形状和大小确定后,进一步确定地球椭球体与大地体的相关位置,才能
作为测量计算的基准面,这个过程称为椭球体定位。
椭球体定位原则:在一个国家或地区范围内使参考椭球面与大地水准面最吻合
方法:使参考椭球体的中心与大地体的中心重合,并在一个国家或地区范围内适当选定一
个地面点(大地原点),使该点处参考椭球面与大地水准面重合
参考椭球体:形状、大小、和定位都已经确定的椭球体(其表面为参考椭球体表面该表面是测量
计算的基准面,其法线是测量计算的基准线)
常见椭球体:克拉索夫斯基椭球体、1975IUGG椭球体、WGS-84椭球体、2000国家大地坐标系
椭球体
测量坐标系:固定在地球上,随地球一起转动的非惯性坐标系
根据原点划分:
地心坐标系:原点与地球质心重合
参心坐标系:原点与参考椭球体中心重合
表现形式划分:大地坐标系、空间直角坐标系、平面直角坐标系
大地坐标系:椭球面坐标系,用精度L、维度B、大地高H表示,基准面为参考椭球面,基
准线是法线椭球体中心为原点
图例都来自 现代测量学(第二版)
空间直角坐标系:椭球体中心为原点,起始子午面与赤道面交线为X轴,赤道面上与X轴
正交的方向为Y轴,椭球体的旋转轴为Y轴
平面直角坐标系:测量中采用的平面直角坐标系有高斯平面直角坐标系、独立平面直角坐
标系(球面看作平面、测量范围较小 例:小于100km2)、建筑施工坐标系
使用该 测量平面直角坐标系 可以完全不变地使用三角函数计算公式,由于测量
学中规定的直线方向及测量角相一致
投影:平面直角坐标系与大地坐标系可以进行相互换算,通常根据两者之间的一一对
应的关系,导出计算公式,这个过程成为地图投影
常用的大地坐标系统:
(1)1954年北京坐标系(1954大地基准) 克拉索夫斯基椭球体为参考
(2)西安坐标系(1980大地基准) 1975年IUGG推荐的参考椭球体
大地原点:陕西省西安市以北60km处的咸阳县泾阳县永乐镇,简称西安原点
(3)地心大地坐标系统(2000国家大地坐标系) 2000国家大地坐标椭球体(地心坐标系)
(4)WGS-84坐标系 1979IUGG推荐的参考椭球体(地心坐标系 GPS采用)
(5)独立坐标系 分为 地方独立坐标系、局部独立坐标系
投影
按投影面分类:圆柱投影、圆锥投影、方位投影 (分别与圆柱面、圆锥面、平面相对应)
按照投影面与参考椭球体面的相关位置分类:
正轴投影:投影面的中心线与参考椭球体短轴重合
横轴投影:投影面的中心线与参考椭球体短轴正交
斜轴投影:投影面的中心线与参考椭球体短轴斜交
投影面与椭球面的关系:相切、相割
按投影变形分类:等角投影(最有利)、等面积投影、任意投影(角度、面积、长度都变形,但误差
较小)
等角投影好处1.角度不变意味着在一定范围内地图上的图形与椭球面上的图形是相似的,地形
图上的任何图形与实地图形相似,在地形图的测绘和应用两方面很方便
2.角度测量是测量的主要工作之一,等角投影可在平面上直接使用观测点角度
值,可免去大量的投影化算工作
高斯投影 横切椭圆柱投影(等角投影、正投影)
椭圆柱面与参考椭球体相切的一条子午线称为中央子午线
条件
1.椭球面上的任一角度,投影前后保持不变
2.中央子午线的投影为直线,且长度无变形
特性
1.中央子午线的投影后为直线,且长度不变。距离中央子午线越远的子午线,投影后的弯曲
程度越大,长度变形也越大。
2.椭球面上除中央子午线外,其它子午线投影后均向中央子午线弯曲,并向两极收敛,对称
于中央子午线和赤道。
3.在椭球面上对称与赤道的纬圈,投影后仍成为对称的曲线,并与子午线的投影曲线互相垂
直且凹向两极。
分带
原则:既要使长度变形满足测量的要求,又要使所分带数尽可能少。
比例尺<1:10000 6°分带(国家控制网) 比例尺>1:10000 3°分带
6°带:从首子午线开始,每隔经差6°为一带分为60带,带号依次1、2、......60
3°带:东经1°30‘开始,每隔经差3°为一带分为120带,带号依次1、2、......120
自然坐标:没有加500km和带号的坐标
国家统一坐标:带号+(y坐标加上500km)