矩阵、行列式

 

矩阵、行列式差异
矩阵行列式
运算结果可看成一个表格可看成一个数
行列数可以不等必须相等

 两个矩阵(或行列式)相等

每个元素对应相等结果相等即可
相加各对应元素相加一行(或列)元素相加
数乘矩阵常数k乘每个元素常数k乘一行(或列)
交换两行(或列)不变号变号
行(或列)×k加至另一行(或列)不变号
初等变换秩不变数值可能改变
矩阵(行列式)某行乘菲0常数k秩不变数值改变

行列式

初等变换:           

        1)行变换:交换两行(列)。

        2)倍法变换:将行列式的某一行(列)的所有元素乘以常数k。

        3)消法变换:把行列式的某一行(列)的所有元素乘以非零常数k并加到另一

                                行(列)的对应元素上。

性质:        

        1)行列互换,行列式不变,得出转置行列式(即行列式转置,值不变)

        2)行列式两行相同,行列式为0

        3)如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个

              行列式除这一行以外全与原来行列式的对应的行一样

        4)行列式中两行成比例,行列式为0

逆序数

        一个排列中逆序的总数(若逆序数为奇数则为奇排列偶数则为偶排列

排列

        对换改变排列的奇偶性

        正在n阶排列中奇、偶排列个数相等,各有n!/2

行列式展开

        行列式等于某一行的元素分别与他们的代数余子式的乘积之和

        在行列式中,一行的元素与另一行相应元素的代数余子式乘积之和为0

常见的行列式种类

        范德蒙行列式、克拉默法则

        

矩阵

1)  矩阵满足的运算

         加法结合律、交换律、分配律;乘法结合律、分配律;消去律不成立。

2)  矩阵相等

         只有完全一致的矩阵才叫做相等。

3)  矩阵加法: 

        同型矩阵(相同的行数、列数)对应元素相加。

4)   秩(A+B)<=秩(A)+秩(B)           |AB|=|A| · |B|

        乘积的秩不超过各因子的秩    秩(AB) <= min[秩(A),秩(B)]

5)   数量矩阵

        常数k乘矩阵A即为k乘以矩阵的每个元素,结果kA称为数量矩阵(一个n阶矩阵与

        所有n阶矩阵做乘法是可交换的)数量矩阵的加法和乘法完全归结为数的加法和乘法。

6)   转置:

        把一矩阵A的行列互换,所得到的矩阵成为A的转置,记为AT

7)    常用转置公式:

        (AT)T = A、(A+B)T=AT+BT、(AB)T=BTAT、(kA)T=kAT

8) 如果|A|!=0,数域P上的n*n矩阵称为非退化(充要条件:秩等于n),否则称为退化(矩

         阵AB为退化的充要条件是A、B其中至少有一个是退化的)。

 9矩阵的逆:

        如果存在B使得AB =BA=E,则称A是可逆的。 ( A⁻¹)T=(AT)⁻¹        (AB)⁻¹=B⁻¹A⁻¹

        伴随矩阵:

        由代数余子式组成的矩阵称为伴随矩阵。

         求逆矩阵方法:

       (一)伴随矩阵发法               A⁻¹=1/|A| ​​​​​​× A*​            

       (二)将原矩阵后接着写同行单位矩阵,将原矩阵变为单位矩阵后,后面的单

                   位矩阵变为对应矩阵的逆矩阵

       (三)定义求法       设出一矩阵后与原矩阵相乘=单位矩阵,解出对应等式

10) 两个互相可逆的矩阵相乘=单位矩阵,他们对应的行列式相乘=1

11) 初等矩阵(其逆矩阵还是初等矩阵):

        由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵

12) 如果B可以有A经过一系列初(行/列)等变换得到,则矩阵BA称为(行/列)等价的

  • 7
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
行列式是一个非常重要的概念,它是线性代数中的一个基础知识点。下面是关于行列式的性质和初等变换的介绍: 1. 行列式的定义:对于一个 $n$ 阶方阵 $A=(a_{ij})$,它的行列式定义为 $|A|=\sum_{\sigma\in S_n}(-1)^{\sigma}a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$,其中 $S_n$ 表示 $n$ 个元素的置换群,$\sigma$ 是 $S_n$ 中的一个置换,$(-1)^{\sigma}$ 表示置换 $\sigma$ 的奇偶性。 2. 行列式的性质: - 行列式与它的转置矩阵行列式相等,即 $|A|=|A^T|$。 - 如果矩阵 $A$ 的某一行(或某一列)全为 $0$,则 $|A|=0$。 - 如果矩阵 $A$ 的两行(或两列)交换,则行列式变号,即 $|A|=-|A'|$,其中 $A'$ 是交换后的矩阵。 - 如果矩阵 $A$ 的某一行(或某一列)乘以一个数 $k$,则行列式也乘以 $k$,即 $|kA|=k^n|A|$,其中 $n$ 是矩阵的阶数。 - 如果矩阵 $A$ 的某一行(或某一列)加上另一行(或另一列)的 $k$ 倍,则行列式不变,即 $|A|=|A'|$,其中 $A'$ 是变换后的矩阵。 3. 初等变换:对于一个矩阵 $A$,我们可以通过三种基本的初等变换来得到一个新的矩阵 $B$,它们分别是: - 交换矩阵的两行(或两列); - 用一个非零数 $k$ 乘矩阵的某一行(或某一列); - 把矩阵的某一行(或某一列)加上另一行(或另一列)的 $k$ 倍。 通过这些初等变换,我们可以把一个矩阵变成一个行阶梯形矩阵或者一个简化的行阶梯形矩阵,从而方便计算它的行列式和求解线性方程组。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值