矩阵、行列式

本文详细介绍了矩阵和行列式的概念、运算规则、性质及其相互关系。包括矩阵的加法、乘法、转置和逆矩阵,以及行列式的初等变换、性质和计算方法。还探讨了矩阵的秩、行列式的展开以及矩阵可逆的条件。内容涵盖了矩阵的等价变换和行列式的奇偶性等核心概念,对于理解和应用线性代数基础知识至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

矩阵、行列式差异
矩阵行列式
运算结果可看成一个表格可看成一个数
行列数可以不等必须相等

 两个矩阵(或行列式)相等

每个元素对应相等结果相等即可
相加各对应元素相加一行(或列)元素相加
数乘矩阵常数k乘每个元素常数k乘一行(或列)
交换两行(或列)不变号变号
行(或列)×k加至另一行(或列)不变号
初等变换秩不变数值可能改变
矩阵(行列式)某行乘菲0常数k秩不变数值改变

行列式

初等变换:           

        1)行变换:交换两行(列)。

        2)倍法变换:将行列式的某一行(列)的所有元素乘以常数k。

        3)消法变换:把行列式的某一行(列)的所有元素乘以非零常数k并加到另一

                                行(列)的对应元素上。

性质:        

        1)行列互换,行列式不变,得出转置行列式(即行列式转置,值不变)

        2)行列式两行相同,行列式为0

        3)如果某一行是两组数的和,那么这个行列式就等于两个行列式的和,而这两个

              行列式除这一行以外全与原来行列式的对应的行一样

        4)行列式中两行成比例,行列式为0

逆序数

        一个排列中逆序的总数(若逆序数为奇数则为奇排列偶数则为偶排列

排列

        对换改变排列的奇偶性

        正在n阶排列中奇、偶排列个数相等,各有n!/2

行列式展开

        行列式等于某一行的元素分别与他们的代数余子式的乘积之和

        在行列式中,一行的元素与另一行相应元素的代数余子式乘积之和为0

常见的行列式种类

        范德蒙行列式、克拉默法则

        

矩阵

1)  矩阵满足的运算

         加法结合律、交换律、分配律;乘法结合律、分配律;消去律不成立。

2)  矩阵相等

         只有完全一致的矩阵才叫做相等。

3)  矩阵加法: 

        同型矩阵(相同的行数、列数)对应元素相加。

4)   秩(A+B)<=秩(A)+秩(B)           |AB|=|A| · |B|

        乘积的秩不超过各因子的秩    秩(AB) <= min[秩(A),秩(B)]

5)   数量矩阵

        常数k乘矩阵A即为k乘以矩阵的每个元素,结果kA称为数量矩阵(一个n阶矩阵与

        所有n阶矩阵做乘法是可交换的)数量矩阵的加法和乘法完全归结为数的加法和乘法。

6)   转置:

        把一矩阵A的行列互换,所得到的矩阵成为A的转置,记为AT

7)    常用转置公式:

        (AT)T = A、(A+B)T=AT+BT、(AB)T=BTAT、(kA)T=kAT

8) 如果|A|!=0,数域P上的n*n矩阵称为非退化(充要条件:秩等于n),否则称为退化(矩

         阵AB为退化的充要条件是A、B其中至少有一个是退化的)。

 9矩阵的逆:

        如果存在B使得AB =BA=E,则称A是可逆的。 ( A⁻¹)T=(AT)⁻¹        (AB)⁻¹=B⁻¹A⁻¹

        伴随矩阵:

        由代数余子式组成的矩阵称为伴随矩阵。

         求逆矩阵方法:

       (一)伴随矩阵发法               A⁻¹=1/|A| ​​​​​​× A*​            

       (二)将原矩阵后接着写同行单位矩阵,将原矩阵变为单位矩阵后,后面的单

                   位矩阵变为对应矩阵的逆矩阵

       (三)定义求法       设出一矩阵后与原矩阵相乘=单位矩阵,解出对应等式

10) 两个互相可逆的矩阵相乘=单位矩阵,他们对应的行列式相乘=1

11) 初等矩阵(其逆矩阵还是初等矩阵):

        由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵

12) 如果B可以有A经过一系列初(行/列)等变换得到,则矩阵BA称为(行/列)等价的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值