自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 loss function in GNNs

其中, 是sigmoid函数,x_i 是正样本,z 是从噪声分布 P_{noise}中抽取的负样本,k 是每个正样本采样的负样本数量。其中,M 是类别的数量,y 是一个二元指示器(0或1),表示样本i是否属于类别c,而p_ic 是模型预测样本i属于类别c的概率。其中,Y 是一个二元标签,表示两个样本是否相似,D_w 是样本之间的距离,m 是一个边界值,用于分隔相似和不相似的样本。它测量的是预测值与真实值之间差的平方的平均值。其中,S_pos 是正样本的得分,S_neg 是负样本的得分,m 是边界值。

2024-07-03 20:10:22 348

原创 Heterogeneous Graph Learning (related paper reading)

然而,在某些图上,特别是异质图上,忽略高频信息并仅关注低频信息会阻碍节点表示的学习。:现有的方法采用手动选择元路径的方法,缺乏可解释性,不能学习谱域内任意可异构图滤波器,且在学习滤波器的过程中没有施加约束,导致学习效率降低,补充一个细节,由于不同类型的node的特征维度不同,所以在进行融合之前先对不同的feature X做了MLP统一他们的维度。这篇文章把不同长度meta-path的视图相融合,然后用“多项式”总结这一方法,并且将多项式乘以其转置,确保结果的正定性。具体方法参考于seHGCN(

2024-07-03 17:40:51 522

原创 关于子空间聚类的相关学习

这样我们就得到了一个解 C,它对应于一个子空间系数矩阵,从中我们可以导出节点的聚类。引入概念Gramian product :n维欧式空间中任意k个向量之间两两的内积所组成的矩阵,称为这k个向量的格拉姆矩阵(Gram matrix),很明显,这是一个对称矩阵。1)使用卷积的GCN对归一化的邻接矩阵以及节点特征矩阵进行卷积融合,并将其代入到子空间聚类公式中去,得到(4)得到,但是这种方法会增加节点数量的二次复杂度,所以对它进行改进,使用非负核函数对U进行映射,计算公式如下。

2024-03-07 19:58:23 428 1

原创 3.2-3.9 论文阅读总结

如图,对于连接节点之间的聚类感知交互信息,本文首先计算每个关系的连接节点之间的节点属性相似度和局部图结构相似度。连接节点之间的权重是根据这两个相似度的加权线性组合来分配的。然后,根据多关系图网络中每个关系的信息级别,使用所提出的启发式聚类感知跨多关系随机游走采样策略来对所有节点的聚类感知交叉关系节点序列进行采样。这篇文章讲述了一种跨关系随机游走的策略,其核心是跨多关系的聚类感知随机游走节点样本策略,以捕获连接节点和不同关系之间的聚类感知交互信息,并将skip-gram 从单层图网络扩展到属性复用图网络。

2024-03-03 17:26:15 358

原创 Attributed Multi-order Graph Convolutional Network for Heterogeneous Graphs

这篇论文是我这周读的最顺畅的一篇,不是因为他的idea特别突出,而是文章的思路很清楚,讲的很详细,所以让我感觉到很顺畅,我觉得有必要多写一点论文解读来记录一下。我的理解是A2是通过添加边为两个原本没有联系的节点添加一个中间节点,然后使得原本没有联系的两个节点通过元路径建立起联系。这篇文章中作者自己提出了三个问题,然后在对模型的讲述中详细地解决了这三个问题。对于建立元路径(meta-paths)的原理,作者举了如下图所示的例子。,其中β是可训练参数,同时这篇文章也欠缺一些对节点属性嵌入的融合考量。

2024-03-01 16:15:09 394 1

原创 图学习相关实验的评价指标

例如,一个模型的ROC-AUC是0.8,那么随机给定一个正样本和负样本,有80%的概率模型给正样本的打分比对于负样本的打分高。),比如下图中的例子。在介绍F1之前明确一下精确率和召回率的概念,精确率就是在所有实际为a的猜测中猜测正确的概率,召回率就是在所有猜测为a的猜测中猜测正确的概率,F1的值就是2*精确率*召回率/(精确率+召回率),就是要找到两个点,她们不仅实际分类相同,预测分类也相同,在上图中就是(u2,v2)以及(u3,v3)的两个数值,也就是说我们需要C(4,2)和C(2,2)的和来表示。

2024-02-28 21:17:32 943 1

原创 2.23-2.27 论文阅读总结

这篇文章的方法我感觉有点奇怪,当然可能是我目前读论文太少的缘故,我第一次看到这个算法的时候以为代码中会用矩阵运算去实现,没想到真的就是用的for循环一个节点一个节点算的,这种方法的效率甚至不用做实验都觉得不高,所以后面读论文的时候关注一下有没有针对这篇论文的改进吧。这个交叉熵的计算目的主要是最大化正样本节点嵌入与s的一致性同时最小化负样本节点嵌入与s的一致性,这里注意负样本是通过对节点嵌入矩阵的行随机洗牌并且重新学习得到的。I是归纳模型,与T相比有两个不同,一是不使用原始的节点属性,而是将其使用转换函数。

2024-02-28 16:17:06 400

原创 Simplifying Clustering with Graph Neural Networks

除此之外,还注意到本文提出的公式中不像Minicut以及DMoN一样有平衡项,虽然这在一定程度上简化了计算,但是还是会担心会不会在训练过程中产生退化的问题,基于此,作者给出了这样的解释,退化解不满足两个条件,一是高置信度的节点分配到同一本集群,二是节点相对均匀地分配到集群中,明显。是一个超参数,随后作者对此公式能够优化特征矩阵的LQV进行了证明,思路就是对x的LQV求偏导,最后得到此公式能够对x进行梯度优化其中。进行补偿,所以将MP层运算优化为以下公式。一、Main idea--JBGNN。

2023-12-18 13:58:12 53 1

原创 Spectral Clustering with Graph Neural Networks for Graph Pooling

能够准确地标记每个簇的 N/K 点,聚类矩阵之间的 Frobenius 范数值不会因聚类大小的差异而产生偏差,因此能够用来优化簇内的方差。,取最小值代表不同的节点簇之间正交的理想情况,取最大值时分子为0,此时代表每个点都连接在一起无法分割的极端情况。中分子表示了类内联系的紧密度,分母表示了类间联系的紧密度,公式中的S正是经过MP层训练得到的软聚类矩阵。分子表示的是类内连接的边数,分母是类间的边数,聚类的目的就是使得这一函数值尽可能的大。Θm 和 Θs是该层的混合和跳过的权重参数。有着明确合理的取值区间。

2023-12-15 19:31:12 156 1

原创 Graph Clustering with Graph Neural Networks

Collapse regularization 是一种宽松的约束,可以防止琐碎的划分,同时不主导主要目标的优化,很明显它是对每一个簇矩阵求和后求Frobenius范数,当簇完全平衡时,它的值为零。,很容易出现问题,文中提到,如果不对C加以约束,最小割和模块化目标的谱聚类都会出现虚假的局部最小值,也就是说将所有节点分配到同一聚类会产生一个平凡的局部最优解,该解决方案会陷入基于梯度的优化方法。现在暂时回归正题,DMoN是什么。新的问题来了,那么C实际上是什么呢,C是B的前k个特征值对应的特征向量形成的矩阵。

2023-12-13 19:28:51 157 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除