loss function in GNNs

1. **交叉熵损失(Cross-Entropy Loss)**:
对于分类任务,尤其是节点分类或图分类,交叉熵损失是最常见的选择。在多类分类中,通常使用softmax函数来将GNN的输出转换为概率分布,然后使用交叉熵损失来比较预测的概率分布与真实的标签。

L_{CE} = -\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{M}y_{ic}\log(p_{ic})

其中,M 是类别的数量,y 是一个二元指示器(0或1),表示样本i是否属于类别c,而p_ic 是模型预测样本i属于类别c的概率
import torch.nn as nn
import torch

output = torch.tensor([[1.0, 2.0, 0.1], [0.1, 1.0, 2.9]])  # Example logits
labels = torch.tensor([1, 2])
loss_fn = nn.CrossEntropyLoss()
loss = loss_fn(output, labels)
2. **均方误差损失(Mean Squared Error, MSE Loss)**:
在回归任务中,如节点回归或图回归,均方误差损失是标准的选择。它测量的是预测值与真实值之间差的平方的平均值。

GNNS是图神经网络的缩写,它是一种用于图数据的机器学习算法。在Python中,有多种实现GNNS算法的库和框架可供使用。根据引用和提供的信息,可以看出有以下几个常用的库和框架可以用于实现GNNS算法: 1. PyG(Pytorch Geometric): PyG是一个使用PyTorch实现的图神经网络库,它提供了丰富的图神经网络模型和数据集。你可以使用PyG来构建和训练GNNS模型,例如使用GraphNodeClassification任务来进行节点分类。通过引用可以了解到如何从github上获取并安装PyG。 2. tf_gnns: tf_gnns是一个用于在TensorFlow-Keras中轻松构建消息传递网络的库,它提供了一些简化构建图神经网络的API。tf_gnns库没有外部依赖关系,除了TensorFlow 2.x。可以通过引用了解更多关于tf_gnns库的信息。 根据提供的引用内容,我们可以使用PyG或tf_gnns库来实现GNNS算法。具体的实现方法和代码细节将根据具体的任务和数据集而定。如果你有具体的问题或需求,请提供更多细节,我可以给出更具体的回答。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [matlabcftool代码-my_GNNS:我的_GNNS](https://download.csdn.net/download/weixin_38709312/19617424)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [benchmarking-gnns-pyg](https://download.csdn.net/download/weixin_42127369/19122934)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [tf_gnns:GraphNets的可破解实现](https://download.csdn.net/download/weixin_42122881/15798667)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值