概率论与数理统计_数理统计部分

目录

相关符号

相关概念与例题

背景

总体与样本

统计量

统计量

常用统计量【重点】

直方图

经验分布函数

正态总体的抽样分布

前言复习

𝝌𝟐分布

𝒕分布

𝑭分布

上侧分位点

抽样分布定理【重点】

点估计

前言

点估计【重点】

矩估计方法【重点】

极大似然估计方法【重点】

区间估计

基本概念

单正态总体参数的区间估计

假设检验的基本概率

假设检验问题的提法、原则与基本步骤

两种错误

关于正态总体的假设检验

1. 𝝈^𝟐已知,关于𝝁的检验

2. 𝝈^𝟐未知,关于𝝁的检验

3.均值𝝁未知时,关于方差𝝈^𝟐的检验

相关总结

具有可加性的分布

正态分布的抽样分析

三种情况下的𝛼比较

区间估计与假设检验


相关符号

数理统计方面的相关符号
符号符号意义
X或F(x)总体
𝒙𝟏,𝒙𝟐,...,𝒙𝒏样本𝑿𝟏,𝑿𝟐,...,𝑿𝒏的观察值,简称样本值
𝒏样本大小或样本容量
𝐹𝑛(𝑥)经验分布函数
𝑌∼𝜒2(𝑛)服从自由度为𝑛的𝜒2分布
𝑇∼𝑡(𝑛)服从自由度为𝑛的𝑡分布
𝐹∼𝐹(𝑛1,𝑛2)服从自由度为𝑛1和𝑛2的𝐹分布

相关概念与例题

背景

数理统计的主要任务:研究怎样以有效的方式收集、整理和分析带有随机性的数据,对所考察的问题作出推断和预测,为决策和行动提供依据和建议.

总体与样本

统计推断——从全体研究对象中抽取部分个体进行实验,利用概率论的理论对所得数据进行处理,从而获得对研究对象统计规律的推测,这种思想的实现称为统计推断

参数估计假设检验是统计推断的两个基本方法。

总体——在数理统计中,把研究对象的全体称为总体或母体。(试验全部可能的观察值)

有限总体: 包括有限个个体的总体。

无限总体: 包括无限个个体的总体。

我们要研究的总体实质上就是某个概率分布,因此我们将总体定义为一个概率分布或服从这个分布的随机变量

个体——组成总体的每一个研究对象称为个体。(每一个可能的观察值)

抽样——为推断总体分布及各种特征,按一定规则从总体中抽取若干个体进行观察试验,以获得有关总体的信息,这一抽取过程称为“抽样”。

样本——被抽取的部分个体称为总体的一个样本
样本容量——样本中所包含的个体数目称为样本容量

样本是𝒏个随机变量𝑿𝟏,𝑿𝟐,...,𝑿𝒏,它们满足:(独立同分布

1. 独立性:𝑿𝟏,𝑿𝟐,...,𝑿𝒏是相互独立的随机变量

2. 代表性:𝑿𝟏,𝑿𝟐,...,𝑿𝒏中每一个与所考察的总体有相同的分布

当取样完成后,我们就得到𝒏个具体的数据:𝒙𝟏,𝒙𝟐,...,𝒙𝒏,称之为样本𝑿𝟏,𝑿𝟐,...,𝑿𝒏的样本观察值,简称样本值,并称𝒏为样本大小样本容量

样本的联合分布律

实际操作中,怎样获得简单随机样本?

对于有限总体,采用放回抽样,就能得到简单随机样本。

        当个体的总数𝑵比样本容量𝒏大得多时,实际中可将不放回抽样近似地当做放回抽样来处理

对于无限总体,总是用不放回抽样。

统计量

统计量

设𝑋1,𝑋2,⋯,𝑋𝑛为来自总体𝑋的一个样本,𝑔(𝑋1,𝑋2,⋯,𝑋𝑛)为一连续函数,若𝑔中不含有总体的任何未知参数,则称𝑇=𝑔(𝑋1,𝑋2,⋯,𝑋𝑛)为统计量。【考点

𝑔(𝑋1,𝑋2,⋯,𝑋𝑛)为连续函数是为保证统计量𝑇是一随机变量。当样本𝑋1,𝑋2,⋯,𝑋𝑛取定观测值𝑥1,𝑥2,...,𝑥𝑛后,𝑇=𝑔(𝑋1,𝑋2,⋯,𝑋𝑛)为一常量或者观察值

常用统计量【重点

直方图

横坐标表示数据,纵坐标有三种表示方法:频数、频率、频率/组距。

频率直方图可以反映出连续型随机变量的频率分布情况

【绘制步骤】
1. 找出样本数据中的最小值最大值,确定数据的取值区间
2. 将区间等分为m个子区间,用横坐标来刻画;
3. 统计数据落在每个子区间上的频数,计算频率及各直方块的高度,用纵坐标来刻画。

经验分布函数

设𝑋1,𝑋2,⋯,𝑋𝑛是总体𝐹的一个样本,用𝑆(𝑥)表示𝑋1,𝑋2,⋯,𝑋𝑛中不大于𝑥的随机变量的个数,定义经验分布函数𝑭𝒏(𝒙)为:𝐹𝑛(𝑥)=1/𝑛 * 𝑆(𝑥),−∞<𝑥<+∞

对于给定的样本值,经验分布函数的观察值很容易得到。经验分布𝐹𝑛(𝑥)的观察值仍以𝐹𝑛(𝑥)表示。

经验分布函数观察值的求法
一般地,设𝑥1,𝑥2,⋯,𝑥𝑛是总体𝐹的一个容量为𝑛的样本值。将𝑥1,𝑥2,⋯,𝑥𝑛按从小到大的次序排列,并重新编号,设为𝑥1≤𝑥2≤⋯≤𝑥𝑛
则经验分布𝐹𝑛(𝑥)的观察值(分布函数,概率)为

 格利文科(Glivenko)定理
对于任意实数𝑥, 经验分布函数𝐹𝑛(𝑥)以概率1一致收敛于总体分布函数𝐹(𝑥)即:
含义是:当𝑛充分大,“对于任意实数, 经验分布函数与总体分布函数之差的绝对值都很小”这个事件发生的概率等于1。
定理表明,当样本容量充分大,经验分布函数常常是对总体分布函数的很好近似。这一结论是数理统计依据样本来推断总体特征的理论基础。

正态总体的抽样分布

前言复习

𝝌𝟐分布

定义:设𝑋1,𝑋2,⋯,𝑋𝑛相互独立均服从标准正态分布,则随机变量𝑌=𝑋1^2+𝑋2^2+⋯+𝑋𝑛^2服从自由度为𝑛的𝜒2分布,记为𝑌∼𝜒2(𝑛)。
密度函数(不重要,知晓图形趋势即可)

𝝌𝟐分布的性质:

(1)可加性:若𝑿~𝝌𝟐(𝒏),𝒀~𝝌𝟐(𝒎),且𝑿和𝒀相互独立,则𝑿+𝒀~𝝌𝟐(𝒏+𝒎)

(2)设𝑿𝟏,𝑿𝟐,⋯,𝑿𝒏相互独立,且均服从正态分布𝑿𝒊∼𝑵(𝝁,𝝈^𝟐),则

(3)数学期望与方差:若𝑿~𝝌𝟐(𝒏),则𝑬(𝑿)=𝒏,𝑫(𝑿)=𝟐𝒏。证明如下:

例题 设总体𝑋~𝑁(0,1),𝑋1,𝑋2,⋯,𝑋6为取自总体𝑋的样本,令𝑌=(𝑋1+𝑋2+𝑋3)^2+(𝑋4+𝑋5+𝑋6)^2,求常数𝐶和n使得𝐶𝑌~𝜒2(n)。

解:

注意】𝜎与𝜎^2,以及相加的关系

𝒕分布

定义:设𝑋~𝑁(0,1),𝑌∼𝜒2(𝑛)且𝑋和𝑌相互独立,则随机变量服从自由度为𝑛的𝑡分布,记为𝑇∼𝑡(𝑛)。
密度函数(不重要,知晓图形趋势即可)

𝒕分布的性质:

1.𝑡分布的密度函数𝑓(𝑥)关于𝑥=0对称。当𝑛充分大时,由T函数的性质有:,即𝑛充分大时𝑡(𝑛)分布近似于𝑁(0,1)分布,但对于较小的𝑛,𝑡(𝑛)分布与𝑁(0,1)分布相差很大。

2. 具有自由度为𝑛的𝑇∼𝑡(𝑛)分布,其期望与方差为𝐸(𝑇)=0,𝑛>1𝐷(𝑇)=𝑛/(𝑛−2),𝑛>2

例题 设𝑋1,𝑋2,⋯,𝑋5为取自总体𝑋的样本,相互独立且均服从标准正态分布,若服从𝑡(𝑛)分布,则𝑑和𝑛的取值?

解:

注意】记得t分布的公式的条件,分母上需要服从标准正态分布

𝑭分布

定义:设𝑋∼𝜒2(𝑛1),𝑌∼𝜒2(𝑛2),且𝑋和𝑌相互独立,则随机变量,服从自由度为𝑛1和𝑛2的𝐹分布,记为𝐹∼𝐹(𝑛1,𝑛2)
密度函数(不重要,知晓图形趋势即可)

例题 已知𝑋∼𝑡(𝑛),证明𝑋^2∼𝐹(1,𝑛)。

证明:因𝑋∼𝑡(𝑛),则存在𝑈∼𝑁(0,1),𝑉∼𝜒^2(𝑛),且𝑈和𝑉相互独立,使得,即t分布的公式

于是,

注意】这里的不是𝝌𝟐分布,注意相关式子的左右侧

上侧分位点

设随机变量𝑋的分布为已知

在概率论中,常常需要计算对于给定𝑥的概率𝑃{𝑋≤𝑥}=𝑝

而在数理统计中,常常需要对给定的𝑝(0<𝑝<1),求出使𝑃{𝑋>𝑥}=𝑝的𝑥

定义:给定𝛼(0<𝛼<1),若数λ𝛼使得𝑃{𝑋>λ𝛼}=𝛼𝐹(λ𝛼)=1−𝛼则称λ𝛼为此概率分布的𝛼上侧分位点或临界值。 (λ𝛼为随机变量取的数,𝛼为概率)

标准正态分布的上侧分位点

1)定义:设𝑋~𝑁(0,1),对于给定的𝛼(0<𝛼<1),使𝑃{𝑋>𝑧(𝛼)}=𝛼或成立的𝑧(𝛼)称为标准正态分布𝛼的上侧分位点。

2)Φ(𝑧(𝛼))=𝑃{𝑋≤𝑧(𝛼)}==1−𝛼

3)−𝑧(𝛼)=𝑧(1−𝛼)

 𝝌𝟐分布的上侧分位点

定义:设𝑋~𝜒2(𝑛),对于给定的𝛼(0<𝛼<1),使𝑃{𝑋>(𝜒𝛼)^2(𝑛)}=𝛼或成立的(𝜒𝛼)^2(𝑛)称为𝜒2分布𝛼的上侧分位点。

当自由度大于45时,可用近似公式:

t分布的上侧分位点

定义:设𝑋~𝑡(𝑛),对于给定的𝛼(0<𝛼<1),使𝑃{𝑋>𝑡𝛼(𝑛)}=𝛼或成立的𝑡𝛼(𝑛)称为𝑡(𝑛)分布𝛼的上侧分位点。

对称性:−𝑡( 𝛼(𝑛) )=𝑡( 1−𝛼(𝑛) )

由𝑡分布的性质:当𝑛趋于无穷时,𝑡分布的极限分布是正态分布,所以当自由度大于45时,可用标准正态分布来近似:𝑡𝛼(𝑛)≈𝑧𝛼

𝑭分布的上侧分位点

定义:设𝑋~𝐹(𝑛1,𝑛2),对于给定的𝛼(0<𝛼<1),使𝑃{𝑋>𝐹𝛼(𝑛1,𝑛2)}=𝛼或成立的𝐹𝛼(𝑛1,𝑛2)称为𝐹(𝑛1,𝑛2)分布𝛼的上侧分位点。

定理:

抽样分布定理【重点

定理1:设总体𝑋~𝑁(𝜇,𝜎^2),𝑋1,𝑋2,⋯,𝑋𝑛是𝑋的一个样本,则,其中为样本均值。

定理2:设总体𝑋~𝑁(𝜇,𝜎^2),𝑋1,𝑋2,⋯,𝑋𝑛是𝑋的一个样本,则

定理3:设总体𝑋~𝑁(𝜇,𝜎^2),𝑋1,𝑋2,⋯,𝑋𝑛是𝑋的一个样本,则

点估计

前言

研究统计量的性质和评价一个统计推断的优良性,完全取决于其抽样分布的性质
统计推断:对总体的未知参数进行估计;对关于参数的假设进行检验。

点估计【重点

设总体𝑋的分布函数𝐹(𝑥,𝜃)形式已知,但其包含未知参数𝜃(可以是一个或者多个参数)。借助于总体𝑋的一个样本来估计总体的未知参数的值,称为点估计问题
点估计问题就是要构建一个适当的统计量^𝜃(𝑋1,𝑋2,⋯,𝑋𝑛),用它的观察值^𝜃(𝑥1,𝑥2,⋯,𝑥𝑛)来估计未知参数𝜃。
对于正态分布,样本均值是𝜇的无偏估计𝑆^2是𝜎^2的无偏估计

例题 在某炸药制造厂,一天中发生着火现象的次数𝑋是一个随机变量,假设它服从以𝜆>0为参数的泊松分布,参数𝜆为未知,设有以下样本值,试估计参数λ。

解:因为𝑋~P(𝜆),所以𝜆=𝐸(𝑋)。用样本均值来估计总体的均值𝐸(𝑋),即
=1/250 *(0×75+1×90+2×54+3×22+4×6+5×2+6×1)=1.22,
故估计参数𝜆的值为1.22

矩估计方法【重点

矩估计法——用样本原点矩估计相应的总体原点矩,又用样本原点矩的连续函数估计相应的总体原点矩的连续函数,这种参数点估计法称为矩估计法

矩估计的基本步骤
设总体𝑋的分布函数中含有𝑘个未知参数𝜃1,𝜃2⋯,𝜃𝑘
1.总体𝑋的𝑘阶矩α1,α2,...,α𝑘,一般地都是总体分布中的参数𝜃1,𝜃2⋯,𝜃𝑘的函数,记为𝜇𝑖=𝜇𝑖(𝜃1,𝜃2⋯,𝜃𝑘),𝑖=1,2,⋯,𝑘
2.从这𝑘个方程中解出:𝜃𝑗=𝜃𝑗(𝜇1,𝜇2,...,𝜇𝑘),𝑗=1,2,⋯,𝑘
3.用诸𝜇𝑖的估计量A𝑖分别代替上式的诸𝜇𝑖,即可得诸𝜃𝑗的矩估计量^𝜃𝑗=𝜃𝑗(𝐴1,𝐴2,⋯,𝐴𝑘),𝑗=1,2,⋯,𝑘
矩估计量的观察值称为矩估计值。
注意】A𝑖是𝜇𝑖的估计值,即𝜇𝑖是样本𝑘阶原点矩的观测值,A𝑖是样本𝑘阶原点矩,简便方法是:𝜇𝑖=E(X^i)

例题 设总体𝑋在[𝑎,𝑏]上服从均匀分布,其中𝑎,𝑏均未知,𝑋1,𝑋2,⋯,𝑋𝑛是来自总体的样本,求𝑎,𝑏的估计量。

解:

注意】用诸𝜇𝑖的估计量A𝑖分别代替上式的诸𝜇𝑖后,还需要用样本𝑋1,𝑋2,⋯,𝑋𝑛及其相关内容进行化简。

例题 设总体𝑋的均值𝜇和方差𝜎^2都存在,且有𝜎>0,但𝜇和𝜎^2均为未知,又设𝑋1,𝑋2,⋯,𝑋𝑛是一个样本,求𝜇和𝜎^2的矩估计量。

解:𝜇1=𝐸(𝑋)=𝜇,𝜇2=𝐸(𝑋^2)=𝐷(𝑋)+𝐸(𝑋)^2=𝜎^2+𝜇^2,令𝜇=𝐴1,𝜎^2+𝜇^2=𝐴2. 

解方程组得到矩估计量分别为

极大似然估计方法【重点

适用范围:总体分布类型已知时。
极大似然法的基本思想:参数(p)的选择应对所出现的观察结果最有利,即参数(p)的选择应使观察结果出现的概率最大。
极大似然估计——设𝑥1,𝑥2,⋯,𝑥𝑛是取自总体𝐹(𝑥;𝜃)的样本观察值,如果当未知参数𝜃取^𝜃时,(𝑥1,𝑥2,⋯,𝑥𝑛)被取到的概率最大,则称^𝜃为𝜃的极大似然估计

求法如下:
1)构建似然函数𝐿(𝜃)=𝐿(𝑥1,𝑥2,⋯,𝑥𝑛;𝜃)
若总体是离散型分布,其分布律为𝑃{𝑋=𝑥}=𝑝(𝑥;𝜃)其中𝜃为未知参数,则样本的联合分布律为

若总体为连续型,其概率密度为𝑓(𝑥;𝜃),则样本的联合概率密度为

2)求似然函数𝐿(𝜃)=𝐿(𝑥)1,𝑥2,⋯,𝑥𝑛;𝜃的最大值点^𝜃

若似然函数𝐿是𝜃的可微函数,则最大值点^𝜃必满足似然方程𝑑𝐿/𝑑𝜃=0
从中解得𝜃,经过检验即可得到𝐿的最大值点^𝜃,^𝜃就是𝜃的极大似然估计。由于𝐿为乘积函数,而𝐿与ln𝐿在同一处取得最大值,所以由对数似然方程 𝑑ln𝐿/𝑑𝜃=0 求解^𝜃。

 例题 设𝑋1,𝑋2,⋯,𝑋𝑛是取自总体𝑋~𝐵(1,𝑝)的一个样本,求参数𝑝的极大似然估计。

例题 已知总体𝑋~𝑁(𝜇,𝜎^2),𝜇和𝜎^2均未知,求这两个参数的极大似然估计。

区间估计

基本概念

参数的区间估计——由样本给出未知参数的一个估计范围(称为估计区间),并使其包含未知参数真值的可靠性达到一定的要求,是对未知参数的另一种估计方法,这就是参数的区间估计

设𝑋1,𝑋2,...,𝑋𝑛是来自总体𝑋的样本,𝑋的分布𝐹(𝑥;𝜃)中含有未知参数𝜃。
对给定的数𝛼(0<𝛼<1),若有统计量^𝜃1=^𝜃1(𝑋1,𝑋2,...,𝑋𝑛)和^𝜃2=^𝜃2(𝑋1,𝑋2,...,𝑋𝑛)(^𝜃1<^𝜃2)使得𝑃{^𝜃1<𝜃<^𝜃2}=1−𝛼,则称随机区间(^𝜃1,^𝜃2)是𝜃的一个双侧置信区间,称1−𝛼为置信度(置信水平)(可靠度),称^𝜃1^𝜃2是该双侧置信区间的置信下限和置信上限。
注意】区分上侧分位点𝛼与置信度1−𝛼
确切的解释是:随机区间(^𝜃1,^𝜃2)包含𝜃的概率是1−𝛼。

置信度𝟏−𝜶是指:参数𝜃的真值在置信区间内的可靠程度(可信度)。
置信区间的长度则是对估计精度的度量。置信区间的长度越短,表示估计的精度越高。即:在概率密度为单峰且对称的情形,当𝒂=−𝒃时求得的置信区间的长度为最短。即使在概率密度不对称的情形,如𝝌𝟐分布,F分布,习惯上仍取对称的分位点来计算未知参数的置信区间。
在求置信区间时,要查表求分位点。

求未知参数𝜽的置信区间的步骤如下:
1.寻找一个样本𝑋1,𝑋2,...,𝑋𝑛的函数:𝐺=𝑔(𝑋1,𝑋2,...,𝑋𝑛;𝜃),它包含待估参数𝜃,但不包含其它未知参数,并且𝐺的分布已知且不依赖于任何未知参数。
2.对于给定的置信水平1−𝛼,定出两个常数𝑎和𝑏,使得𝑃{𝑎<𝑔(𝑋1,𝑋2,...,𝑋𝑛;𝜃)<𝑏}=1−𝛼
3.若能从𝑎<𝑔(𝑋1,𝑋2,⋯,𝑋𝑛;𝜃)<𝑏得到等价的不等式^𝜃1<𝜃<^𝜃2,其中^𝜃1=^𝜃1(𝑋1,𝑋2,⋯,𝑋𝑛),^𝜃2=^𝜃2(𝑋1,𝑋2,⋯,𝑋𝑛)都是统计量,那么(^𝜃1,^𝜃2)就是𝜃的一个置信度为1−𝛼的置信区间。

例题 设总体𝑋~𝑁(𝜇,𝜎^2),𝜎^2为已知,𝜇为未知, 设𝑋1,𝑋2,...,𝑋𝑛是来自𝑋的样本,求𝜇的置信度为0.95的置信区间。

注意】给定样本,给定置信水平,置信区间也不是唯一的。对同一个参数,我们可以构造许多置信区间。

在概率密度为单峰且对称的情形,当𝒂=−𝒃时求得的置信区间的长度为最短。即使在概率密度不对称的情形,如𝝌𝟐分布,F分布,习惯上仍取对称的分位点来计算未知参数的置信区间。

单正态总体参数的区间估计

1. 𝜎^2已知时,求𝝁的置信区间

由上述例题可知,𝜇的置信水平为1−𝛼的一个置信区间为

2. 𝜎^2未知时,求𝝁的置信区间

因为𝑆^2是𝜎^2的无偏估计,可用𝑆替换𝜎,由第六章学过的定理3可知

例题 有一大批糖果,现从中随机地取16袋,称得重量(克)如下:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

设袋装糖果的重量服从正态分布,试求总体均值的置信度为0.95的置信区间。

3. 求𝜎^2的置信区间

𝑆^2是𝜎^2的无偏估计,可以以𝑆^2为基础来构建𝜎^2的置信区间。根据第六章学习的定理2可知:

对于给定的𝛼,查附表得𝜒2分布得分位点,使得

例题 有一大批糖果,现从中随机地取16袋,称得重量(克)如下:

506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496

设袋装糖果的重量服从正态分布,试求总体方差的置信度为0.95的置信区间。

假设检验的基本概率

假设检验问题的提法、原则与基本步骤

假设检验问题——根据样本的信息检验关于总体的某个假设是否正确,这类问题称作假设检验问题

假设检验问题主要包括:
(1)已知总体分布的形式,需对其中的未知参数给出假设检验—参数检验
(2)总体的分布形式完全未知的情况下,对总体的分布或数字特征进行假设检验—非参数检验

通常的办法是进行抽样检查。

假设检验的基本思想
(1)提出假设:𝑯𝟎为原假设(或零假设); 𝑯𝟏为备选假设(或对立假设)
(2)选检验统计量,已知总体分布时根据总体分布的式子进行选定
(3)对给定的显著性水平𝛼,可以在𝑁(0,1)表中查到分位点的值𝑧(𝛼/2),使𝑃{|Z|>𝑧(𝛼/2)}=𝛼,确定H0的拒绝域W
(4)由样本观察值计算统计量观察值t
(5)作出判断:当t∈W时,则拒绝H0,否则不拒绝H0,即认为在显著水平𝛼下,H0与实际情况差异不显著

如果𝐻0是对的,那么衡量差异大小的某个统计量落入拒绝域𝑊(𝑊:|Z|>𝑧(𝛼/2))是个小概率事件。如果该统计量的实测值落入了𝑊,说明𝐻0成立下的小概率事件发生了,那么就认为𝐻0不可信而否定它。否则我们就不能否定𝐻0。
而不否定𝐻0并不是肯定𝐻0一定对,而只是说差异还不够显著,还没有达到足以否定𝐻0的程度。所以假设检验又叫“显著性检验”。

如果显著性水平𝛼取得很小,则拒绝域𝑊也会比较小。产生的后果是:𝐻0难于被拒绝。
如果在𝛼很小的情况下𝐻0仍被拒绝了,则说明实际情况很可能与之有显著差异
基于这个理由,人们常把𝜶=0.05 时拒绝𝐻0称为是显著的,而把在𝜶=0.01 时拒绝𝐻0称为是高度显著的。

注意】注意区分上侧分论点𝛼、置信水平1-𝛼和显著水平𝛼

例题 某工厂生产的一种螺钉,标准要求长度是32.5毫米。实际生产的产品,其长度𝑋假定服从正态分布𝑁(𝜇,𝜎^2),𝜎^2未知,现从该厂生产的一批产品中抽取6件,得尺寸数据如下:32.56, 29.66, 31.64, 30.00, 31.87, 31.03,此时显著水平𝜶=0.01,问这批产品是否合格?

分析:这批产品(螺钉长度)的全体组成问题的总体𝑋。现在要检验𝐸(𝑋)是否为32.5。此时相当于𝜎^2未知,关于𝝁的检验。

解:第一步:提出原假设和对立假设
𝐻0:𝜇=32.5        𝐻1:𝜇≠32.5
第二步:取一检验统计量(能衡量差异大小且分布已知),在𝑯𝟎成立下求出它的分布

第三步:对给定的显著水平𝜶=0.01 ,查表确定临界值:

𝑡𝛼/2(5)=𝑡0.005(5)=4.0322使得𝑃{|𝑇|>𝑡𝛼/2(5)}=𝛼,即“|𝑇|>𝑡𝛼/2(5)”是一小概率事件,并得到拒绝域𝑊:|𝑇|>4.0322

第四步:将样本值代入算出统计量𝑇的实测值𝑇=2.997<4.0322故不能拒绝𝐻0

注意:这并不意味着𝑯𝟎一定对,只是差异还不够显著,不足以否定𝑯𝟎

两种错误

 【注意】需要区分第一类错误和第二类错误,并记住其代表的内容

第一类错误:当H0为真时,却拒绝了H0,也称这类错误为去真错误。
第二类错误:当H0不真时,却接受了H0,也称这类错误为存伪错误。​​​​

关于正态总体的假设检验

1. 𝝈^𝟐已知,关于𝝁的检验

可以提出三种假设检验问题:
(i)𝐻0:𝜇=𝜇0⇔𝐻1:𝜇≠𝜇0(通常)
(ii)𝐻0:𝜇≤𝜇0⇔𝐻1:𝜇>𝜇0
(iii)𝐻0:𝜇≥𝜇0⇔𝐻1:𝜇<𝜇0
当对立假设𝐻1分散在原假设𝐻0两侧时的检验称为双侧检验,否则称为单侧检验。

由于𝜎已知,选检验统计量
对于假设检验问题𝐻0:𝜇=𝜇0,对给定的显著性水平𝛼,其拒绝域为:

 对于假设检验问题𝐻0:𝜇≤𝜇0,构造的拒绝域为:

 对于假设检验问题𝐻0:𝜇≥𝜇0,构造的拒绝域为:

2. 𝝈^𝟐未知,关于𝝁的检验

 对于上述的假设检验,我们选用的检验统计量为:

例题 某种元件的寿命𝑋(以小时记)服从正态分布𝑁(𝜇,𝜎^2),𝜇,𝜎^2均未知。现测得16只元件的寿命如下:159 280 101 212 224 379 179 264222 362 168 250 149 260 485 170

问是否有理由认为元件的平均寿命大于225(小时)?(取显著性水平为0.05)

解:按题意需检验𝐻0:𝜇≤𝜇0=225,𝐻1:𝜇>225.

拒绝域为:

没有落在拒绝域内,故不能拒绝原假设,认为元件的平均寿命不大于225小时。

3.均值𝝁未知时,关于方差𝝈^𝟐的检验

对于上述的假设检验,我们选用的检验统计量为:

例题 某炼铁厂铁水中碳含量的百分数𝑋服从正态分布𝑁(𝜇,0.112^2),现在对工艺进行改进,从中选取7炉铁水,测得碳含量的百分数为4.411,4.062,4.337,4.394,4.346,4.277,4.693,试问新工艺炼出铁水碳含量百分数的方差是否有显著性改变(𝛼=0.05)?

解:这里的零假设为𝐻0:𝜎^2=0.112^2⇔𝐻1:𝜎^2≠0.112^2

根据均值未知时,方差假设检验的(i),拒绝域为

因𝜒2落在拒绝域内,故拒绝原假设,认为新工艺炼出铁水碳含量百分数的方差有显著性改变。

相关总结

具有可加性的分布

二项分布、泊松分布、正态分布、𝝌𝟐分布

正态分布的抽样分析

三种情况下的𝛼比较

区间估计与假设检验

  • 6
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值