概率论-3.1 多位随机变量及其联合分布

本文介绍了n维随机变量的概念,包括联合分布函数的定义、性质及其在二维情况下的具体表现。联合分布列和联合密度函数作为描述多维随机变量概率特性的工具,其性质和计算方法也进行了阐述。此外,还提到了多项分布、多维超几何分布、多维均匀分布以及二元正态分布等特殊类型的分布。这些概念在概率论和统计学中具有重要意义。
摘要由CSDN通过智能技术生成

n维随机变量:设样本空间U={w},X1(w), X2(w), …, Xn(w)是定义在样本空间U上的n个随机变量,则称X(w)= X(X1(w), X2(w), …, Xn(w))为n维随机变量(或随机向量)
联合分布函数:对任意n个实数x1, x2, …, xn,n个事件{X1<=x1}, {X2<=x2}, …, {Xn<=xn}同时发生的概率为F(x1, x2, …, xn)=P(X1<=x1, X2<=x2,…, Xn<=xn)
二维联合分布函数的基本性质:
对任意x1<=x3, x2<=x4
非负性:F(x1, x2)=P(X1<=x1, X2<=x2)>=0
单调性:F(x1, x2)<= F(x3, x4)
有界性:0<= F(x1, x2) <=1
右连续性:lim(x3->x1) F(x3, x2)= F(x1, x2); lim(x4->x2) F(x1, x4)= F(x1, x2)
以上证明可参考1维随机变量分布函数性质的证明

联合分布列:
n维随机向量(X1, X2, …, Xn)取有限个或可列个数对,p(x1, x2, …, xn)=P(X1=x1, X2=x2, …, Xn=xn)
联合分布列性质:
非负性:p(x1, x2, …, xn)>=0
正则性:Sum(p(x1, x2, …, xn))=1

联合密度函数:
n维随机向量(X1, X2, …, Xn),若存在p(X1, X2, …, Xn),则n维随机向量(X1, X2, …, Xn)的分布函数F(x1, x2, …, xn)=积分符^n p(a1, a2, …, an) dai^n
积分范围:<X1, X2, …, Xn>
联合密度函数性质:
非负性:p(X1, X2, …, Xn)>=0
正则性:F(x1, x2, …, xn)=积分符^n p(a1, a2, …, an) dai^n=1
多项分布:多项分布是多维的离散分布,是二项分布的推广b(n,p)
进行n次独立重复试验,每次试验有r个互不相容的结果:A1, A2, …, Ar
试验Ai发生的概率为pi,xi为事件Ai发生的次数,Sum(xi)=n
P(X1=x1, X2=x2, …, Xn=xr)=(n! / (x1!x2!…*xr!))p1r1*p2r2…*pr^

多维超几何分布:
描述:袋中有N个球,其中Ni个i号球,i=1,2,…,r,N=Sum(Ni),任意取n个球,Xi为n个球中Ni号球的个数,i=1,2,…,r
P(X1=n1, X2=n2, …,X-ray=nr)=Mul((Ni ni)’) / (N n)’,Sum(ni)=n

多维均匀分布:
设有n维随机变量(X1, X2, …, Xn)
p(x1, x2, …, xn)=1 / <X1, X2, …, Xn>,随机变量属于<X1, X2, …, Xn>
0,随机变量不属于<X1, X2, …, Xn>

二元正态分布:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值