论文分享:图像识别与隐私安全

文章探讨了在人脸识别领域如何利用差分隐私、联邦学习等技术保护用户隐私。其中,研究了一种在频域下基于差分隐私的人脸识别算法,以及无密钥依赖的医学图像隐私保护框架。同时,联邦学习被用于解决人脸识别的隐私问题,包括无监督域适应和散列学习的方法。此外,还提到了深度学习结合同态加密在安全认证系统中的应用,以及基于计算机视觉的云数据访问预防策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基于差分隐私框架的频域下人脸识别隐私保护算法

Privacy-Preserving Face Recognition with Learnable Privacy Budget in Frequency Domain

2、一种基于视觉密码学和可信计算的无密钥依赖的医学图像安全隐私保护框架

A Privacy Protection Framework for Medical Image Security without Key Dependency Based on Visual Cryptography and Trusted Computing

3、基于人脸识别的联邦学习

Federated Learning for Face Recognition

4、通过与隐私无关的集群改进联邦学习人脸识别

IMPROVING FEDERATED LEARNING FACE RECOGNI

TION VIA PRIVACY-AGNOSTIC CLUSTERS

5、通过联邦散列学习实现隐私掌纹识别

Towards privacy palmprint recognition via federated hash learning

6、通过联邦学习对隐私约束下深度人脸识别的无监督域适应

Towards Unsupervised Domain Adaptation for Deep Face Recognition under Privacy Constraints via Federated Learning

7、基于联邦学习和集成模型的可转移人脸图像隐私保护

Transferable face image privacy protection based on federated learning and ensemble models

8、SecureDL:一种用于云上图像识别的隐私保护深度学习模型

SecureDL: A privacy preserving deep learning model for image recognition over cloud

9、一种保护隐私的手语基于深度学习的加密手势识别云服务

P2SLR: A Privacy-Preserving Sign Language Recognition as-a-Cloud Service Using Deep Learning For Encrypted Gestures

10、一种基于加密方案的可逆数据隐藏的智能环境安全生物特征认证系统

A secure biometric authentication system for smart environment using reversible data hiding through encryption scheme

11、基于计算机视觉的人脸识别技术中的云数据访问预防方法

Cloud Data Access Prevention Method in Face Recognition Technology Based on Computer Vision

12、基于网格-DCT变换和THM混沌的加密人脸识别算法

Encrypted face recognition algorithm based on Ridgelet-DCT transform

and THM chaos

13、基于深度学习和同态加密的人脸安全认证系统

Face Security Authentication System Based on Deep Learning and Homomorphic Encryption

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序先锋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值