去雾网络----GCA-Net

GCA-Net

论文链接:https://arxiv.org/abs/1811.08747

代码链接:GitHub - cddlyf/GCANet: Implementation of "Gated Context Aggregation Network for Image Dehazing and Deraining"

1.网络结构:

我们的整体网络结构也设计为简单的自动编码器,其中在编码器和解码器之间插入七个残差块以增强其学习能力。具体来说,首先使用三个卷积层将输入的模糊图像编码为特征图作为编码器部分,其中只有最后一个卷积层将特征图下采样 1/2 一次。对称地,在解码器部分使用一个步幅为 1/2 的反卷积层将特征图上采样到原始分辨率,然后接下来的两个卷积层将特征图转换回图像空间以获得最终的目标雾度残留。

对于中间残差块,我们称它们为“Smoothed Dilated Resblock”,因为我们已将所有原始常规卷积层替换为上述平滑扩张卷积层。这七个残差块的膨胀率分别设置为(2, 2, 2, 4, 4, 4, 1)。为了在性能和运行时间之间取得良好的折衷,我们将所有中间卷积层的通道数设置为 64。请注意,除了最后一个卷积层和平滑扩张卷积层中每个额外的可分离和共享卷积层外,我们将每个卷积层之后的实例归一化层 和 ReLU 层。在实验部分,我们将展示实例归一化比批量归一化更适合图像去雾任务。

除了输入图像之外,预先计算输入图像的边缘并将其作为辅助信息馈送到网络中对网络学习非常有帮助。因此,默认情况下,我们也采用这个简单的想法,将预先计算的边缘与输入的模糊图像沿通道维度连接起来,作为 GCANet 的最终输入。

2.创新点:

  1.平滑扩张卷积:

现代图像分类网络 通常通过连续的池化和子采样层集成多尺度上下文信息,这些层会降低分辨率,直到获得全局预测。然而,对于像分割这样的密集预测任务,矛盾在于所需的多尺度上下文推理和下采样过程中丢失的空间分辨率信息。为了解决这个问题,提出了一种新的扩张卷积层,它支持感受野的指数扩展,而不会损失分辨率或覆盖范围。尽管空洞卷积很有效,但它会产生所谓的网格伪影。为了缓解这一问题,提出通过增加一个额外的内核大小为(2r - 1)的卷积层,在稀释卷积前的输入单元或稀释卷积后的输出单元之间增加交互。在本文中,我们选择默认添加输入单元的依赖性。需要注意的是,采用了可分离和共享卷积作为额外的卷积层,而不是虚构的卷积层。 这样,这个特殊的卷积层有一个恒定的参数大小(2r - 1)2,它与特征通道数无关。

  2.门控融合子网

融合不同层次的特征通常对低层次和高层次的任务都有好处。为了实现这个想法,可以使用特征金字塔来融合所有尺度的高级语义特征图,或者利用密集连接的网络。

在本文中,我们采用了一种不同的方式,加入了一个额外的门控融合子网络 G。具体来说,我们首先从不同级别的 Fl、Fm、Fh 中提取特征图,并将它们输入到门控融合子网络中。门控融合子网络的输出是三个不同的重要性权重(Ml,Mm,Mh),分别对应每个特征级别。最后,将这三个不同层次的特征图 Fl、Fm、Fh 与回归的重要性权重线性组合。

在本文中,我们的门控融合子网络仅包含一个卷积层,内核大小为 3x3,其输入是 Fl、Fm、Fh 的串联,输出通道数为 3。

  3.损失函数:

采用了简单的均方误差损失,但与其他方法不同的是,我们的学习目标是无雾图像和输入有雾图像之间的残差:

其中 r 和 r^ 分别是地面实况和预测的雾度残留。在运行时,我们将 r^ 添加到输入的有雾图像上,以获得最终预测的无雾图像。可以加入感知,GAN损失来优化效果。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值