数据结构中,对于图的存储我们是使用邻接矩阵或者邻接表来进行存储的。树就是一种特殊的图,而图我们又分为有向图和无向图,而无向图又是一种特殊的有向图,即每两点之间都存在两条通路。
邻接矩阵存储,是指用一个一维数组存储图中顶点的信息,用一个二维数组存储图中边的信息,即各顶点之间的邻接关系,存储顶点之间邻接关系的二维数组称为邻接矩阵。用的很少,我们重点要掌握邻接表。
临接矩阵
不带权邻接矩阵中,A[i][j] = 1代表两点之间临接;A[i][j] = 0代表两点不临接
带权的邻接矩阵中:
A[i][j] = wij(两点之间的权值)代表两点邻接
A[i][j] = ∞ 代表两点不相邻
邻接表的存储,如果有n个顶点,我们就开辟n个单链表,每个链表表示顶点可以到那些点。
树与图的深度优先遍历
邻接表的存储
int h[N], e[N * 2], ne[N * 2], idx;
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
树和图的dfs模板
void dfs(int u)
{
state[u] = true;//标记一下,记录已经被搜索过了
for(int i = h[i]; i != -1; i = ne[i])
{
int j = e[i];
if(!state[j]) dfs(j);
}
}
我们要求删除一个节点u后最大联通快的大小,我们会分割成三个联通块
即
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int n;
int h[N], e[N * 2], ne[N * 2], idx;//n个单链表
bool state[N];//表示该节点是否遍历过
int ans = N;//最终的答案
void add(int a, int b)//在节点a上加一条到b的边
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
int dfs(int u)
{
state[u] = true;//进来先标记一下该节点已经遍历过了
int size = 0;//size表示将u去除后,剩余子树中连通块的最大值
int sum = 1;//sum表示以u为根的子树的点有多少,初始值为1,因为已经有这个根了
for(int i = h[u]; i != -1; i = ne[i])
{
int j = e[i];
if(!state[j])
{
int s = dfs(j);//s是以j为根节点的子树中节点的数量
size = max(size, s);
sum += s;
}
}
size = max(size, n - sum);
ans = min(size, ans);
return sum;
}
int main()
{
scanf("%d", &n);
memset(h, -1, sizeof h);//把每个节点的链表都初始化为-1,即刚开始的节点链表都是空链表,指向-1
for(int i = 0; i < n - 1; i++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b), add(b, a);//因为是无向边,所以每两个节点之间都有两条边
}
dfs(1);//从第一个节点开始搜索,从那个节点搜索都是可以的
cout << ans << endl;
return 0;
}
树与图的广度优先遍历
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int h[N], e[N], ne[N], idx;
int d[N];//表示到节点1的距离是多少
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
int bfs()
{
memset(d, -1, sizeof d);
queue<int> q;
d[1] = 0;
q.push(1);
while(q.size())
{
int t = q.front();
q.pop();
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(d[j] == -1)//j没有被扩展过
{
d[j] = d[t] + 1;
q.push(j);
}
}
}
return d[n];
}
int main()
{
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
for(int i = 0; i < m; i++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
}
cout << bfs() << endl;
return 0;
}
拓扑序列
拓扑序列是基于有向无环图的:拓扑序列只有从前指向后的边,没有从后指向前的边,即入度为0
入度:指被指向边的数量
初度:指指向边的数量
如图:a的入度为0,出度为2
如图就是一个拓扑结构;注意:只要一个图构成了了环就一定不是拓扑结构
拓扑序列的输出可以有多种形式:
如图:输出的方式可以是:a,b,c,d; 也可以是:a,c,b,d; 也可以是:a,b,d,c
我们可以发现入队的点是顺序的就是拓扑结构,所有的边都是从前指向后的
求拓扑结构就是把入度为0的点都排到前面去
有向无环图就是拓扑图
例题:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int h[N], e[N], ne[N], idx;
int q[N];//表示队列
int d[N];//表示到起点的距离,深度
void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
bool topsort()
{
int hh = 0, tt = -1;//初始化队列
for(int i = 1; i <= n; i++)
{
if(!d[i]) q[++tt] = i;//将入度为0的点入队
}
while(hh <= tt)//队列不为空
{
int t = q[hh++];//取出队头
for(int i = h[t]; i != -1; i = ne[i])//遍历邻接表
{
int j = e[i];
d[j]--;//删除点t指向点j的边
if(d[j] == 0) //如果点j的入度为0了,就将j入度
q[++tt] = j;
}
}
return tt == n - 1;//如果n个点都入队了的话,就说明该图是拓扑结构
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof h);//先把邻接表的每个点都置成空的,即初始化邻接表
for(int i = 0; i < m; i++)
{
int a, b;
scanf("%d%d", &a, &b);
add(a, b);
d[b]++;//因为a指向b所以b点的深度要加1
}
if(topsort())
{
for(int i = 0; i < n; i++) printf("%d ", q[i]);
puts("");
}
else puts("-1");
return 0;
}