
试除法求约数
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
例题:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> get_divisors(int x)
{
vector<int> res;
for(int i = 1; i <= x / i; i++)
{
if(x % i == 0)
{
res.push_back(i);
if(i != x / i) res.push_back(x / i);//防止出现两根相同的情况
}
}
sort(res.begin(), res.end());
return res;
}
int main()
{
int n;
cin >> n;
while(n--)
{
int x;
cin >> x;
auto res = get_divisors(x);
for(auto x : res) cout << x << ' ';
cout << endl;
}
return 0;
}
约数个数
算数基本定理:N = p1^a1 * p2^a2 * … * pk^ak
那么约数的个数 ans = (a1 + 1)(a2 + 1)(a3 + 1)…(ak + 1);0 <= Bi <= ai
因为任何一个约数d都可以表示d = p1^b1 * p2^b2 * … * pk^bk,如果每一项Bi都不同,那么约数d就不同
B1共有 0 ~ a1种选法
B2共有 0 ~ a2种选法
…
例题:
#include <iostream>
#include <unordered_map>//底层哈希表
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
int n;
cin >> n;
unordered_map<int, int> primes;//存储所有的底数和指数
while(n--)
{
int x;
cin >> x;
for(int i = 2; i <= x / i; i++)
{
while(x % i == 0)
{
primes[i]++;//i的质因数指数+1
x /= i;
}
}
if(x > 1) primes[x]++;//x的最大公约数大于 sqrt(x)
}
LL res = 1;
for(auto p : primes) res = res * (p.second + 1) % mod;//公式
cout << res << endl;
return 0;
}
约数之和
算法基本定理:N = p1^a1 * p2^a2 * … * pk^ak
约数之和的公式:
ans = (p1^0 + p1^1 + … + p1^k) * … * (pk^0 + pk^1 + … + pk^k)
例题:
#include <iostream>
#include <unordered_map>
#include <vector>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 110, mod = 1e9 + 7;
int main()
{
int n;
cin >> n;
unordered_map<int, int> primes;
while(n--)
{
int x;
cin >> x;
for(int i = 2; i <= x / i; i++)
{
while(x % i == 0)
{
x /= i;
primes[i]++;//指数+1
}
}
if(x > 1) primes[x]++;
}
LL res = 1;
for(auto p : primes)
{
LL a = p.first, b = p.second;
LL t = 1;
//1.t = p1^1 + p1^0
//2.t = p1^2 + p1^1 + p1^0
//......
//+1就是代表了p1^0这一项p1果不会溢出
res = res * t % mod;
}
cout << res << endl;
return 0;
}
总结
- 算数基本定理:N = p1^a1 * p2^a2 * … * pk^ak
- 约数个数:ans = (a1 + 1)(a2 + 1)(a3 + 1)…(ak + 1)
- 约数之和:ans = (p1^0 + p1^1 + … + p1^k) * … * (pk^0 + pk^1 + … + pk^k)