时序区间预测 | Matlab基于高斯过程回归(GPR)时间序列区间预测

本文介绍了使用Matlab进行高斯过程回归(GPR)时间序列区间预测的方法,提供了单变量输入模型的代码示例。文章讨论了评估指标,如R2、MAE、MSE、RMSE、区间覆盖率和区间平均宽度百分比,并强调代码质量高,易于学习和数据替换。
摘要由CSDN通过智能技术生成


效果一览

1
2
3

文章概述

基于高斯过程回归(GPR)时间序列区间预测,matlab代码,单变量输入模型。
基于高斯过程回归(GPR)时间序列区间预测,matiab代码,单变量输入模型。
评价指标包括:R2、MAE、MSE、RMSE和区间覆盖率和区间平均宽度百分比等,代码质量极高,
方便学习和替换数据。

部分源码

%
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值