智能优化算法 | Matlab实现鲸鱼优化算法(Whale Optimization Algorithm)(内含完整源码)

本文详细介绍了如何在Matlab中实现鲸鱼优化算法(WOA),包括算法的主要步骤:初始化、适应度计算、位置更新等。文中提供完整源码,并列出相关参考资料供读者深入学习。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

智能优化算法 | Matlab实现鲸鱼优化算法(Whale Optimization Algorithm)(内含完整源码)

研究内容

步骤 1:设置鲸鱼数量 N 和算法的最大迭代次数 tmax,初始化位置信息;
步骤 2:计算每条鲸鱼的适应度,找到当前最优鲸鱼的位置并保留;
步骤 3:计算参数 a、p 和系数向量 A、C。判断概率 p 是否小于 50%,是则直接转入步骤 4,否则采用气泡网捕食机制:按式(2-1)进行位置更新;
步骤 4:判断系数向量 A 的绝对值是否小于 1,是则包围猎物:按式(1-2)更新位置;否则全局随机搜索猎物:按式(3-1)更新位置;
​步骤 5:位置更新结束,计算每条鲸鱼的适应度,并与先前保留的最

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法如诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值