(.pynb)Generate new papers from library using keywords

这篇博客展示了如何使用PyTorch从自定义库中生成新的论文。首先导入相关包,然后设置生成论文的数量和关键词。博客中创建了一个CIFAR10数据集,并用它训练了一个卷积神经网络模型。最后,利用训练好的模型和指定的关键词生成了新的论文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有空填坑,如需自取

# Import relevant packages
import torch
from torch import nn, optim 
from torchvision import datasets, transforms 
from torch.utils.data import DataLoader 
from tqdm import tqdm
import matplotlib.pyplot as plt

# Specify the library to generate papers from 
library = '我滴papers'

# Specify number of papers
num_papers = 5

# Specify keywords for papers
keywords = ['算了吧', '都可以', '挺好的', '随缘吧']

# Set seed for reproducibility 
torch.manual_seed(10)

# Create a training dataset
dataset = datasets.CIFAR10(root='./data', download=True, transform=transforms.ToTensor())

# Create a dataloader
loader = DataLoader(dataset, batch_size=128, shuffle=True)

# Create a model 
class AI_Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.fc1 = nn.Linear(64 * 6 * 6, 512)
        self.fc2 = nn.Linear(512, 256)
        self.fc3 = nn.Linear(256, 10)
        
    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 6 * 6 * 64)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
    
# Create instance of AI model
model = AI_Model()

# Define loss and optimizer 
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Train the model 
with tqdm(total=num_epochs, unit='epoch') as pbar:
    for epoch in range(num_epochs):
        ep_loss = 0
        for data, target in loader:
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            ep_loss += loss.item()
            loss.backward()
            optimizer.step()
        pbar.update(1) # Update progress bar

# Generate new papers from library using keywords
for i in range(num_papers):
    paper = generate_paper(library=library, keywords=keywords)
   

print('Generated paper {}: {}'.format(i+1, paper))

在VHDL设计中,层次化设计是一种常用的方法,它将复杂的系统分解成更小、更易于管理的部分。对于4位锁存器的设计,我们可以按照以下步骤进行: 1. **模块定义**: 首先,创建一个名为`Lock4Bit`的基本块(block),这个块会包含一个4位锁存电路的核心逻辑,如D型触发器。 ```vhdl library IEEE; use IEEE.STD_LOGIC_1164.ALL; entity Lock4Bit is Port ( D : in STD_LOGIC_VECTOR(3 downto 0); Clock : in STD_LOGIC; Q : out STD_LOGIC_VECTOR(3 downto 0)); end Lock4Bit; ``` 2. **结构体体体(architecture)**: 定义锁存器的工作过程,这里可以使用for...generate循环来为每个输入位独立定义触发器。 ```vhdl architecture Behavioral of Lock4Bit is begin process(D, Clock) variable temp : STD_LOGIC_VECTOR(3 downto 0) := "0000"; begin for i in 0 to 3 loop if rising_edge(Clock) then temp(i) <= D(i); end if; end loop; Q <= temp; -- 输出当前状态 end process; end Behavioral; ``` 3. **元件实例化及for...generate应用**: 如果你想要在一个更大的设计中复用这4位锁存器,你可以通过`generate`语句来创建多个实例。例如,如果你需要10个这样的锁存器,你可以这样做: ```vhdl entity TopLevel is Port ( Clk : in STD_LOGIC; Inputs : in STD_LOGIC_VECTOR(39 downto 0); Outputs : out STD_LOGIC_VECTOR(39 downto 0) ); end TopLevel; architecture Behavioral of TopLevel is component Lock4Bit Port ( D : in STD_LOGIC_VECTOR(3 downto 0); Clock : in STD_LOGIC; Q : out STD_LOGIC_VECTOR(3 downto 0) ); end component; signal Regs : array(0 to 9) of Lock4Bit; begin -- 这里使用for...generate实例化锁存器并连接信号 for i in 0 to 9 generate Regs(i).D <= Inputs(i*4+3 downto i*4); -- 分配输入到每个锁存器对应的位 Regs(i).Clock <= Clk; Outputs(i*4+3 downto i*4) <= Regs(i).Q; end generate; -- 其他必要的连接... end Behavioral; ``` 4. **仿真**: 使用VHDL的集成开发环境(IDE),如Quartus II或ModelSim等工具对`TopLevel`实体进行仿真,检查锁定和读出数据是否正确。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值