PyTorch中self.layers的作用

文章详细解释了PyTorch中的nn.ModuleList在处理多层神经网络时的作用,特别是在自定义Transformer模型中,如何动态创建并维护层的顺序,以及在forward方法中如何进行层间的数据传递和计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

self.layers 是一个用于存储网络层的属性。它是一个 nn.ModuleList 对象,这是PyTorch中用于存储 nn.Module 子模块的特殊列表。

为什么使用 nn.ModuleList

在PyTorch中,当需要处理多个神经网络层时,通常使用 nn.ModuleListnn.Sequential。这些容器类能够确保其中包含的所有模块(层)都被正确注册,这样PyTorch就可以跟踪它们的参数,实现自动梯度计算和参数更新。

self.layers 的作用

class UserDefined(nn.Module):
    def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
        super().__init__()
        self.layers = nn.ModuleList([])
        for _ in range(depth):
            self.layers.append(nn.ModuleList([
                PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
                PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
            ]))
    
    def forward(self, x):
        for attn, ff in self.layers:
            x = attn(x) + x
            x = ff(x) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值