自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

转载 dataclass.Feild函数的使用

我们可以使用 dataclasses.field 来定制化 dataclass 字段的行为以及它们在 dataclass 的影响。仍然是上述的使用情形,让我们从__post_init__里去除 get_random_marks 的调用。dataclasses.field 接受了一个名为 default_factory 的参数,它的作用是:如果在创建对象时没有赋值,则使用该方法初始化该字段。对于一个dataclass类,若要进行初始化,一种简单的方式是使用__post_init__方法。

2024-10-12 14:58:46 12

原创 Opendronemap的docker使用

其中-v后面的内容是将本地的地址挂载到docker镜像上的索引,":"前面是本地的地址,后面不需要改变,是docker镜像中的地址。若以上方法不可行,可以通过如下方法,从可以完成pull的设备上拷贝镜像文件到当前设备(注意要保证采用的架构一致)添加阿里云docker资源(docker资源近期更换频繁,建议检查并更新该镜像源)该过程可能会出现网络问题,我在18.04上没有遇到,但是在20.04上遇到以下问题。采用的是ubuntu18.04的xavier和ubuntu20.04的orin。

2024-09-22 10:53:16 512

原创 使用OPENSFM构建一个类似于DTU的数据集

cameras:width为图像宽度,height为图像高度,focal_x为横向焦距,focal_y为纵向焦距,c_x为视图横坐标中心,c_y为视图纵坐标中心,k1,k2,k3以及p1,p2为相机畸变矫正。"100_0039_0112.JPG"为照片标号,rotation为俯仰角,translation为三个坐标系上的平移。通过如下代码进行reconstruction.json的文件转存为camera的txt文件。通过如下代码进行pair构建,大多数的DTU格式数据集中相似度不关键,故设为1000。

2024-08-18 20:59:00 154

原创 DTU数据集中文件组成及其含义

请注意,深度范围和深度分辨率由最小深度、两个深度样本之间的间隔以及深度样本数量(如果未提供,则在训练/测试脚本中)确定。我们还保留了用于控制深度分辨率的选项。然后,最大深度计算为:pair.txr第一行为数据集中包含的源图像的数目之后的没两行为一小组,举例第二行和第三行第二行:0为源图像的标号第三行:第一个为10是参考图像的标号,第二个为参考图像的标号,第三个为参考图像和原图像的相似度;自此开始到最后,重复第二个和第三个的含义。

2024-08-18 20:32:41 413

原创 通过GDAL实现tif图片坐标信息转换为WGS84

geoTransform[1]:影像宽度方向上的分辨率(经度范围/像素个数)# geoTransform[5]:影像宽度方向上的分辨率(纬度范围/像素个数)通过如上代码来确定要转换到的坐标系信息,其中4326代表WGS1984坐标系;# geoTransform[2]:x像素旋转, 0表示上面为北方。# geoTransform[4]:y像素旋转, 0表示上面为北方。# geoTransform[0]:左上角像素纬度。# geoTransform[3]:左上角像素经度。2.通过如上参数计算投影坐标。

2024-07-17 20:09:36 727

原创 进行openrealm的slam模块更改

2.将OpenREALM_ROS1_Bridge-master\realm_ros\CMakeLists.txt中的70行左右,find_package中的find_package(ORB_SLAM2 REQUIRED)前的注释取消。5.然后将OpenREALM_ROS1_Bridge-master\realm_ros\launch\alexa_reco.launch中的。4.然后重新编译openrealm,再重新编译openrealm_bridge。

2023-12-13 10:39:00 584 1

原创 关于openrealm中的试验

1.将其中的点云生成方法进行替换,例如orbslam,进行更深一步的点云替换,比如用sfm,colmap等输出的稠密点云数据。思路:一个process获取,另一个process进行传输,无法进行整体的替换,只能使用增量式的方法。点云以pointcloud形式存储,1.点云ID 2.Mat类型存储实际数据。经过实验,若整体的增加在-1~+1之间,对整体效果没有特别大的影响。2.在高程上添加一个随机数,看生成出来的拼接图像效果是否足够好。正在进行,在正射影像中的高程上添加了一个随机数。若有了点云还需要什么?

2023-11-26 17:01:31 334 1

原创 openrealm配置

下载测试数据集:https://drive.google.com/open?注意:其中的./install_deps.sh中包含的库中多数已经安装过,可以文本形式打开,自己选择其中未安装项进行安装。DBoW2 : 必须使用作者的修改版 https://github.com/shinsumicco/DBoW2.解压 tar -xvzf open_realm_edm_dataset.tar.gz。执行roslaunch realm_ros alexa_gnss.launch。

2023-09-06 20:31:14 1502 29

原创 使用orbslam位姿进行map2dfusion的建图

所以要使用orb-slam生成该格式的位姿数据,此处为了提高建图融合的效果,选取将所有帧及其位姿用于建图。fx,fy,cx,cy是摄像头内参,改为config.cfg中Camera.Paraments的后四位。Camera.Paraments为摄像头参数,前两个为图像的分辨率,后面四个分别为摄像机内参。二、在orb-slam的System.cc中添加如下函数,保存所有的轨迹。k1,k2,k3,p1,p2为摄像头的畸变参数,这里全部设置为0。第5~8位是摄像头的rotation,采用的四元数的格式。

2023-08-03 17:08:12 1027 2

原创 论文阅读:Map2DFusion: Real-time Incremental UA V Image Mosaicing based onMonocular SLAM

为了获得更好的拼接效果,通常在混合之前进行一个裁剪步骤,然而,大多数裁剪方法[28]对于瞬时应用来说计算成本很高,而且它们也丢弃了权重,并且需要对所制备的所有图像进行蒙版处理。对于关键帧Kj,其在视频中的时间戳为t j,在地图中的平移为Pmap t j,则其对应的GPS时间戳应为tg = t j + tvg,变换后的WGS84坐标为SvgPmap t j。为了生成高质量的地图,需要获得高质量的轨迹,但在视觉SLAM中,跟踪漂移是不可避免的,这会导致在长行程积累过程中产生不可容忍的不对中误差。

2023-06-08 17:02:02 1113 2

原创 解析.bag文件获得图片,pcd点云,并将图片编成符合slam的数据集形式

(66条消息) 解析rosbag中的.bag文件,得到.jpg图片数据和.pcd点云数据_NJIER的博客-CSDN博客。调整到你需要存储图片的文件夹中,或者新建文件夹,新建终端执行以下命令,其中<>中为你的topic信息。调整到待解析的rosbag文件目录下,回放rosbag包,执行以下命令。2.若原有的数据集不符合slam的运行时序,采用如下代码进行修正。1.若数据集是用.bag文件进行提取的则采用如下代码进行编译。会生成一个rgb.txt文件,并且会将图片重新命名,可以看出topic类型以及数量。

2023-06-08 11:11:08 2464 1

原创 ORB_SLAM2的单目SLAM稠密点云建模

删除ORB-SLAM2_RGBD_DENSE_MAP-master/Thirdparty/DBoW2/build 文件夹。将 ORB_SLAM2 下的 Vocabulary 子文件夹复制粘贴到 ORB_SLAM2_modified 文件夹下。(2)ORB_SLAM2_modified/Thirdparty/g2o/CMakeLists.txt中删除。(1)ORB_SLAM2_modified/cmakelist.txt中删除。(1)修改build_ros.sh文件。四、编译./build_ros.sh。

2023-06-03 11:05:03 593 3

原创 jeston部署ORB_SLAM2的bug集合

ORB-SLAM默认订阅的话题为/camera/image_raw,而usb_cam节点发布的话题为/usb_cam/image_raw,因此需要在ros_mono.cc中修改订阅的话题。修改ORB_SLAM2/Examples/ROS/ORB_SLAM2/src/ros_momo.cc文件里面的路径。2)安装ROS下的ssh远程控制插件,不使用teamviewer控制远程控制下位机(推荐)

2023-05-25 15:51:01 442 1

原创 Jetson 部署ORB SLAM2

图中左侧窗口中的绿色小方块为提取的图像ORB特征,右侧窗口中的绿线代表相机的运动轨迹,蓝色方框代表相机运动过程中的空间位置(即关键帧),黑点和红点代表环境的稀疏地图(黑色代表历史路标,红色表示当前路标)。创建src目录并进入初始化空间,并catkin_make添加cmake目录,在环境中添加启动路径。新建终端(于catkin_ws/src/usb_cam/lauch文件中)在解压后的Pangolin路径下进行编译安装。一定要安装3.x版本的,不可用4.x版本。编译ROS环境下的ORB_SLAM。

2023-05-25 15:27:30 560

原创 配置Jeston板上的yolov5并使用Tensorrt加速

部署yolov5到jeston板,并且使用tensorrt加速

2023-01-18 19:37:47 441

原创 Retinex图像增强

Retinex图像增强,用于去除模糊,增强图像特征,用于学习

2022-11-25 19:34:36 4226

原创 C++在windows平台上布置yolov5

简单记录一下这个方法,这里的方法均不是原创,是经过多个大神的帖子总结整合出来的一套方法

2022-11-23 19:23:47 3102 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除