LeetCode1049
有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
如果 x == y,那么两块石头都会被完全粉碎;
如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。
输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
输入:stones = [31,26,33,21,40] 输出:5
1 <= stones.length <= 30
1 <= stones[i] <= 100
题目理解:有一袋子石头 你可以两两相撞(创完之后 两个石头都会减少都有损耗 比如 重量为2,5相撞最后只剩下一块重量为3的石头了) 撞到最后剩下一个石头 求最后一个石头最小的重量
思路: 如果我们能把一袋子石头平均的分为两袋 那么两袋的差不就是我们要求的结果了吗, 和每袋的石头的数量无关 只和重量有关系
首先把袋子里石头的总重量求出来 记为sum 他的一半记为target 也就是两袋子尽量往target靠近,才能使结果越小
那么问题就转换成为了 一共能装target重量的石头 求如何装使得袋子重量越靠近target,也可以类似于 0-1背包问题 重量为stones[]={2,7,4,1,8,1},价钱也为stones[]={2,7,4,1,8,1},求当重量为target的袋子最多能装多少钱的物品
最后提一嘴结果为什么是 sum - dp[target] - dp[target]; 其中看成( sum - dp[target])与dp[target]这两坨相减 前一项是你装完之后剩下的重量 而dp[target] 是你分的袋子的重量,dp[target]就是你从总袋子分出来的一袋 而sum - dp[target]就是 你从总袋子中剩下的重量。
代码其实就是价值和重量数组都为stones[]={2,7,4,1,8,1}的数组,如何袋子重量为target的0-1背包问题
这个一维的实现 第二层要从后面开始遍历 我的理解是 你如果先从前面开始遍历的话 那你后面的数组更新用到的数组就是下一层的数据了,所以你要从后面开始遍历,这样子你用dp【j】的数据时候就是上一层的数据了
一维数组参考了B站Carl的思路真的讲的很清楚!!!
https://www.bilibili.com/video/BV14M411C7oV/?spm_id_from=333.788
一维数组C++ 实现:
int lastStoneWeightII(vector<int>& stones) {
int n=stones.size();
vector<int> dp(15001, 0);
int sum = 0;
for (int i = 0; i < n; i++) sum += stones[i];
int target = sum / 2;
for (int i = 0; i < stones.size(); i++) {
for (int j = target; j >= stones[i]; j--) {
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
return sum - dp[target] - dp[target];
}
二维数组C++ 实现:
int lastStoneWeightII(vector<int>& stones) {
int sum = 0;
for (int i = 0; i < stones.size(); i++) sum += stones[i];
int n=stones.size();
int target = sum / 2;
int dp[n][target+1]; //当前背包容量为target的时候 前n件物品 所能装的最大价值
for(int i=0;i<n;i++)
for(int j=0;j<target;j++)
dp[i][j]=0;
for(int i=0;i<n;i++){
for(int j=0;j<target;j++)
cout<<dp[i][j]<<" ";
cout<<endl;
}
for (int i = 1; i < n; i++) {
for (int j = 1; j<=target; j++) {
if(j>=stones[i])
dp[i][j] = max(dp[i-1][j], dp[i-1][j - stones[i]] + stones[i]);
else
dp[i][j]=dp[i-1][j];
}
}
return (sum - dp[n-1][target]) - dp[n-1][target];
}