佐助被大蛇丸诱骗走了,鸣人在多少时间内能追上他呢?
已知一张地图(以二维矩阵的形式表示)以及佐助和鸣人的位置。地图上的每个位置都可以走到,只不过有些位置上有大蛇丸的手下,需要先打败大蛇丸的手下才能到这些位置。鸣人有一定数量的查克拉,每一个单位的查克拉可以打败一个大蛇丸的手下。假设鸣人可以往上下左右四个方向移动,每移动一个距离需要花费1个单位时间,打败大蛇丸的手下不需要时间。如果鸣人查克拉消耗完了,则只可以走到没有大蛇丸手下的位置,不可以再移动到有大蛇丸手下的位置。佐助在此期间不移动,大蛇丸的手下也不移动。请问,鸣人要追上佐助最少需要花费多少时间?
输入格式:
输入的第一行包含三个整数:M,N,T。代表M行N列的地图和鸣人初始的查克拉数量T。0 < M,N < 200,0 ≤ T < 10
后面是M行N列的地图,其中@代表鸣人,+代表佐助。*代表通路,#代表大蛇丸的手下。
输出格式:
输出包含一个整数R,代表鸣人追上佐助最少需要花费的时间。如果鸣人无法追上佐助,则输出-1。
输入样例1:
4 4 1
#@##
**##
###+
输出样例1:
6
输入样例2:
4 4 2
#@##
**##
###+
输出样例2:
4
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
思路:bfs
#include<bits/stdc++.h>
using namespace std;
const int N = 204;
typedef struct P{
int x, y,t,time;
}p;
p mingren;
char mapv[N][N]={0};
int v[N][N] = {0};
int xgo[4] = {-1, 1, 0, 0},ygo[4] = { 0, 0,-1, 1};
int bfs(){
queue<p> q;
p n;
q.push(mingren);
while(!q.empty()){
for(int i = 0; i < 4; i++){
n.x = q.front().x + xgo[i];
n.y = q.front().y + ygo[i];
n.t = q.front().t;
n.time = q.front().time;
if(mapv[n.x][n.y] == '*' && v[n.x][n.y] == 0){
n.time++;
q.push(n);
v[n.x][n.y] = 1;
}else if(mapv[n.x][n.y] == '#' && v[n.x][n.y] == 0){
if(n.t > 0){
n.time++;
n.t--;
q.push(n);
v[n.x][n.y] = 1;
}
}else if(mapv[n.x][n.y] == '+'){
n.time++;
q.push(n);
return n.time;
}
}
q.pop();
}
return -1;
}
int main(){
int m, n, t;
cin >> m >> n >> t;
for(int i = 1; i <= m; i++)
for(int j = 1; j <= n; j++){
cin >> mapv[i][j];
if(mapv[i][j] == '@'){
mingren.x = i;
mingren.y = j;
}
}
mingren.t = t;
mingren.time = 0;
v[mingren.x][mingren.y] = 1;
int re = bfs();
cout << re;
}
//code by 01100_10111;