数据可视化实验---使用matplotlib绘制条形图、饼图、箱型图、误差棒图

本文介绍了如何使用Python的matplotlib库绘制条形图、饼图和箱形图,展示了在电商替代率、支付宝账单分析和电力发电量统计中的应用,以及如何在柱形图上添加误差棒来表示测量偏差。
摘要由CSDN通过智能技术生成

题目一:绘制条形图

编写程序。根据实例3的要求,绘制一个展示各商品种类的网购替代率的条形图,实现过程如下:

  1. 导入matplotlib.pyplot模块;
  2. 准备x轴和y轴的数据;
  3. 绘制条形图。

编程代码:

import matplotlib.pyplot as plt

import numpy as np

plt.rcParams['font.sans-serif'] = ['SimHei']

plt.rcParams['axes.unicode_minus'] = False

x = np.array([0.959, 0.951, 0.935, 0.924, 0.893,

              0.892, 0.865, 0.863, 0.860, 0.856,

              0.854, 0.835, 0.826, 0.816, 0.795,

              0.765, 0.763, 0.67])

y = np.arange(1, 19)

labels = ["家政、家教、保姆等生活服务", "飞机票、火车票", "家具", "手机、手机配件",

          "计算机及其配套产品", "汽车用品", "通信充值,游戏充值", "个人护理用品",

          "书报杂志及音像制品", "餐饮、旅游、住宿", "家用电器",

          "食品、饮料、烟酒、保健品", "家庭日杂用品", "保险、演出票务",

          "服装、鞋帽、家用纺织品", "数码产品", "其他商品和服务", "工艺品、收藏品"]

plt.barh(y, x, tick_label=labels, align='center', height=0.6)

plt.show()

实验结果:

题目二:绘制饼图

编写程序。根据实例6的要求,绘制一个展示支付宝月账单报告的饼图,实现过程如下:

  1. 导入matplotlib.pyplot模块;
  2. 准备饼图的数据;
  3. 绘制饼图。

实验代码:

#绘制一个展示支付宝月账单报告的饼图

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.sans-serif'] = ['SimHei']

mpl.rcParams['axes.unicode_minus'] = False

# 饼图外侧的说明文字

kinds = ['购物','人情往来','餐饮美食','通信物流','生活日用','交通出行','休闲娱乐','其他']

# 饼图的数据

money_scale=[800/3000,100/3000,1000/3000,200/3000,300/3000,200/3000,200/3000,200/3000]

dev_position = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]

#绘制饼图

plt.pie (money_scale, labels=kinds, autopct='%3.lf%%', shadow=True, explode=dev_position, startangle=90)

plt.show()

实验结果:

题目三:绘制箱形图

编写程序。根据实例8的要求,绘制一个2017年和2018年全国发电量统计箱形图

实现过程如下:

  1. 导入matplotlib.pyplot模块;
  2. 准备箱形图的数据;
  3. 绘制箱形图。

实验代码:

#绘制一个2017年和2018年全国发电量统计箱形图

import numpy as np

import matplotlib.pyplot as plt



plt.rcParams['font.family'] = 'SimHei'

plt.rcParams['axes.unicode_minus'] = False



data_2018 = np.array([5200, 5254.5, 5283.4, 5107.8, 5443.3, 5550.6,

                      6400.2, 6404.9, 5483.1, 5330.2, 5543, 6199.9])

data_2017 = np.array([4605.2, 4710.3, 5168.9, 4767.2, 4947, 5203,

                      6047.4, 5945.5, 5219.6, 5038.1, 5196.3, 5698.6])



# 绘制箱形图

plt.boxplot([data_2018, data_2017], labels=('2018年', '2017年'),

            meanline=True, widths=0.5, vert=False, patch_artist=True)

plt.show()

实验结果:

题目四:柱形图的上方绘制误差棒

编写程序。根据实例10的要求,绘制一个展示马尾松、樟树、杉木、桂花4个树种不同季节的细根生物量的误差棒图,实现过程如下:

  1. 导入matplotlib.pyplot模块;
  2. 准备柱形图的数据;
  3. 准备测量偏差数据;
  4. 绘制柱形图;
  5. 在柱形图的上方绘制误差棒。

实验代码:

#绘制一个展示马尾松、樟树、杉木、桂花4个树种不同季节的细根生物量的误差棒图

import numpy as np

import matplotlib.pyplot as plt

plt.rcParams['font.family'] = 'SimHei'

plt.rcParams['axes.unicode_minus'] = False

# 准备 x轴和y轴的数据

x = np.arange(3)

yl = np.array([2.04,1.57,1.63])

y2 = np.array([1.69,1.61,1.64])

y3 = np.array([4.65,4.99,4.94])

y4 = np.array([3.39,2.33,4.10])

# 指定测量偏差

error1 = [0.16,0.08,0.10]

error2 = [0.27,0.14,0.14]

error3 = [0.34,0.32,0.29]

error4 = [0.23,0.23,0.39]

bar_width = 0.2

# 绘制柱形图

plt.bar(x,yl,bar_width)

plt.bar(x + bar_width,y2,bar_width, align="center",

        tick_label=["春季","夏季","秋季"])

plt.bar(x + 2*bar_width,y3,bar_width)

plt.bar(x + 3*bar_width, y4, bar_width)

# 绘制误差棒 : 横杆大小为 3,线条宽度为 3,线条颜色为黑色,数据点标记为像素点plt.errorbar(x,yl,yerr=errorl,capsize=3,elinewidth=2, fmt='k,')

plt.errorbar(x + bar_width, y2, yerr=error2, capsize=3,

            elinewidth=2,fmt='k,')

plt.errorbar(x + 2*bar_width, y3, yerr=error3, capsize=3,

            elinewidth=2,fmt='k,')

plt.errorbar(x + 3*bar_width, y4, yerr=error4, capsize=3,

            elinewidth=2,fmt='k,')

plt.show()

实验结果:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值