图Graph及相关算法(Dijkstra,Kruskal)

目录

无向图

有向图

邻接矩阵

邻接表

图的bfs,dfs

二部图(二分图)

有向无环图(DAG)

拓扑排序(Topological Sort)

AOV网

迪杰斯特拉Dijkstra

最小生成树

克鲁斯卡尔:Kruskal

普里姆:prim


图是多对多关系,是顶点和边的二元组和。

无向图

1.依附关系:边(v1,v2)依附于顶点v1,v2。

2.完全图:所有可能的边都存在C_{n}^{2}

3.路径:一个点到另一个点的边。

4.简单路径:除起点终点可能相同外,其他点不允许重复出现。

5.连通:有路径可通。(有n个点,可能联通需要n-1条边,一定能联通C_{n-1}^{2}+1,拿掉一个点完全联通图+1)

6.连通图:图中所有点之间均有路径可通。

7.子图:子图顶点集合\epsilon原顶点集合,边集合\epsilon边集合。

8.极大连通子图(连通分量):画圈的就是。

有向图

1.连通图:相异成对顶点间路径可通。

2.极大连通子图(强连通分量):成对顶点间均有路径可通。

3.用<v1,v2>。

邻接矩阵

边多适用,唯一。

12345
101110
210101
311011
410101
501110

邻接表

边少适用,不唯一。

图的bfs,dfs

图的创建:(1)顶点个数(2)申请并初始化(3)放边

DFS:(1)标记数组(2)遍历:1.打印顶点2.标记(3)标记邻接点,找邻接的未处理过的同(2)

BFS:(1)Queue(2)标记初始化(3)起始顶点入队标记(4)处理:弹出,打印,遍历邻接点,未处理邻接点入队,标记,等待处理重复(4)

#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
typedef struct node
{ 
	int nedge;
	int nV;
	int* pjuzhen;
}Graph;
Graph* Create()
{
	Graph* pGraph = (Graph*)malloc(sizeof(Graph));
	//顶点个数,边的条数
	int nv, ne;
	cin >> nv >> ne;
	pGraph->nedge = ne;
	pGraph->nV = nv;
	pGraph->pjuzhen = (int*)malloc(sizeof(Graph) * nv * nv);
	memset(pGraph->pjuzhen, 0, sizeof(Graph) * nv * nv);
	for (int i = 0; i < ne; i++)
	{
		int v1, v2;
		cin >> v1 >> v2;
		if (v1>=1&& v1<=nv&&v2>=1&&v2<=nv&&v1!=v2&&pGraph->pjuzhen[(v1 - 1) * nv + v2 - 1] == 0)
		{
			pGraph->pjuzhen[(v1 - 1) * nv + v2 - 1] = 1;
			pGraph->pjuzhen[(v2 - 1) * nv + v1 - 1] = 1;
		}
		else i--;
	}
	return pGraph;
}
void DFSGraph(Graph* pGraph, int fir, int* pMark)
{
	cout << fir << " ";
	pMark[fir - 1] = 1;
	for (int i = 0; i < pGraph->nV; i++)
	{
		if (pGraph->pjuzhen[(fir - 1) * pGraph->nV + i] == 1 && pMark[i] == 0)
		{
			DFSGraph(pGraph, i + 1, pMark);
		}
	}
}
void BFS(Graph* pGraph, int fir)
{
	if (pGraph == NULL || fir<1 || fir>pGraph->nV)return;
	int* pMark = NULL;
	pMark = (int*)malloc(sizeof(int) * pGraph->nV);
	memset(pMark, 0, sizeof(int) * pGraph->nV);
	queue<int>q;
	q.push(fir);
	pMark[fir - 1] = 1;
	while (!q.empty())
	{
		fir = q.front();
		q.pop();
		cout << fir << " ";
		for (int i = 0; i < pGraph->nV; i++)
		{
			if (pGraph->pjuzhen[(fir - 1) * pGraph->nV + i] == 1 && pMark[i] == 0)
			{
				q.push(i + 1);
				pMark[i] = 1;
			}
		}
	}free(pMark);
	pMark = NULL;
}
void DFS(Graph* pGraph,int fir)
{
	if (pGraph == NULL || fir < 1 || fir>pGraph->nV)return;
	int* pMark=NULL;
	pMark = (int*)malloc(sizeof(int)*pGraph->nV);
	memset(pMark, 0, sizeof(int) * pGraph->nV);
	DFSGraph(pGraph, fir, pMark);
	free(pMark);
	pMark = NULL;
}
int main()
{
	Graph* p = Create();
	for (int i = 0; i < p->nV * p->nV; i++)
	{
		if (i % p->nV == 0)cout << endl;
		cout << p->pjuzhen[i] << " ";
	}
	cout << endl;
	DFS(p, 2);
	cout << endl;
	BFS(p, 4);
	cout << endl;
	return 0;
}

二部图(二分图)

G=(u,v,e),u,v都是顶点集合,边是发生在集合之间的,但是集合内部没边关系。

例如:这个就不是,因为v2和v4是一个集合的它们相连了。

例如:这个就是。

有向无环图(DAG)

例:

有向无环图一定有拓扑排序。

拓扑排序(Topological Sort)

为一个项目内具各依赖关系的活动求得可执行的线性顺序。这个线性顺序叫拓扑序列。

拓扑序列:若从顶点vi到vj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前。

有拓扑排序的一定是DAG。

AOV网

AOV没有回路的前提下,可以将全部活动排序列成拓扑序列。

步骤:

(1)统计所有顶点入度。

(2)创建队列。

(3)入度为0的节点入队。

(4)处理 :出队,所有邻接点的入度更新,新的入度为0的节点入队。

迪杰斯特拉Dijkstra

点到点的最短路径:

v1v2v3v4
v10760
v2120229
v311500
v402360

这里写一下v1到各个点的最短距离。

v1{0,7,6,0}                 (找数最小不为0的点)

v1,v3{0,7,6,0}           (v3->v2为5,5+6<7,所以为7,v3到不了v4还是为0)

v1,v3,v2{0,7,6,16}    (v2->v4为9,9+7=16)

最小生成树

克鲁斯卡尔:Kruskal

按路径长度从小到大排序,如果两点已经连通就跳过。

例:

先是3,4,5,6路径连上。

由于v4,v7已经联通所以跳过11。

连上15,20,结束。

普里姆:prim

假设从v1节点寻找。

v1->v3,v1->v4,v1->v8中v1->v8最小。

v1->v3,v1->v4,v8->v7中v8->v7最小,所以选v8->v7。

v1->v3,v1->v4,v7->v4,v7->v6中,v1->v4最小,选v1->v4。

v1->v3,v4->v3,v4->v5,v4->v6,v7->v6中,v4->v3最小,选v4->v3。

后续同理(由于v4,v7已经连通所以看下一个15)。

结果:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值