代码随想录Day 42|Leetcode|Python|121. 买卖股票的最佳时机 ● 122.买卖股票的最佳时机II

121. 买卖股票的最佳时机

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

解题思路:

贪心算法:

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices)<=1:
            return 0
        #greedy
        min_prices = float('inf')
        max_profit = 0
        for i in range(len(prices)):
            min_prices = min(min_prices, prices[i])
            max_profit = max(max_profit, prices[i]-min_prices)
        return max_profit

确认dp数组含义:dp[i][0]第i天时持有股票时所得最多现金,dp[i][1]第i天时未持有股票时所得最多现金

确认递推公式:dp[i][0] = max(dp[i-1][0], -prices[i]), -prices[i]指第i天买入股票后所持有现金

dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]), dp[i-1][0]+prices[i]指今天卖掉股票

初始化:dp[0][0] = -prices[0], dp[0][1] = 0第一天买入股票和第一天不买股票

遍历顺序:从前到后遍历

打印dp数组

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp = [[0]*2 for _ in range(len(prices))]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1,len(prices)):
            dp[i][0] = max(dp[i-1][0], -prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i])
        dp1 = dp[len(prices)-1][0]
        dp2 = dp[len(prices)-1][1]
        return max(dp1, dp2)

122.买卖股票的最佳时机II

解题思路:

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

解题思路:

贪心算法

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        #greedy
        result = 0
        for i in range(1, len(prices)):
            if prices[i] - prices[i-1]>0:
                result += prices[i] - prices[i-1]
        return result

动态规划:

与第一题类似,不同之处在于递推公式要考虑前一天的盈利情况

确认dp数组含义:dp[i][0]第i天时持有股票时所得最多现金,dp[i][1]第i天时未持有股票时所得最多现金

确认递推公式:dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]),dp[i-1][1]-prices[i]指第i-1天没有股票,但是第i天买入股票,在前一天财产基础dp[i-1][1]上减去当天股票价格,得到目前现金总额

dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]),dp[i-1][0]+prices[i] 指i-1天持有股票时的金额数加上第i天卖掉股票后赚得现金总额。

初始化:dp[0][0] = -prices[0], dp[0][1] = 0第一天买入股票和第一天不买股票

遍历顺序:从前向后遍历

打印dp数组:[[-7, 0], [-1, 0], [-1, 4], [1, 4], [1, 7], [3, 7]]

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp = [[0]*2 for _ in range(len(prices))]
        dp[0][0] = -prices[0]
        dp[0][1] = 0
        for i in range(1, len(prices)):
            dp[i][0] = max(dp[i-1][0], -prices[i])
            dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i])
        dp1 = dp[len(prices)-1][0]
        dp2 = dp[len(prices)-1][1]
        return max(dp1, dp2)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值