309.最佳买卖股票时机含冷冻期
给定一个整数数组prices
,其中第 prices[i]
表示第 i
天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)
解题思路:
确认dp数组含义:
dp[i][0]持有股票状态下金额
dp[i][1]一直保持售出状态下金额
dp[i][2]售出股票当天状态下金额
dp[i][3]冷冻期状态下金额
dp公式:
dp[i[0] = max(dp[i-1][0], dp[i-1][1]-prices[i], dp[i-1][3]-prices[i])分为三种可能,前一天同样持有股票,前一天一直保持售出状态,前一天是dp[i][3]冷冻期状态下金额
dp[i][1] = max(dp[i-1][1], dp[i-1][3]
dp[i]2] = dp[i][0] + prices[i]
dp[i][3] = dp[i-1][2]如果第i天为冷冻期说明前一天一定刚卖出
初始化:
dp[0][0] = -prices[0]
dp[0][1] = 0
dp[0][2] = 0
dp[0][3] = 0
遍历顺序:从前向后遍历
打印dp数组
class Solution:
def maxProfit(self, prices: List[int]) -> int:
dp = [[0]*4 for _ in range(len(prices))]
#第i天持有股
dp[0][0] = -prices[0]
#持续不持有股卖出状态
dp[0][1] = 0
#卖出股当天
dp[0][2] = 0
#freeze day
dp[0][3] = 0
for i in range(1, len(prices)):
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i], dp[i-1][3]-prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][3])
dp[i][2] = dp[i-1][0]+prices[i]
dp[i][3] = dp[i-1][2]
dp1 = dp[len(prices)-1][1]
dp2 = dp[len(prices)-1][2]
dp3 = dp[len(prices)-1][3]
return max(dp1, dp2, dp3)
714.买卖股票的最佳时机含手续费
给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
解题思路:
本题可分为两种状态即持有股票和不持有股票。dp[i][0]持有dp[i][1]不持有
确认dp数组含义:dp[i][0]第i天持有股票状态下金额,dp[i][1]第i天不持有股票时的金额数
递推公式:
dp[i][0] = max(dp[i-1][0], dp[i1][1]-prices[i]-fee](卖出后减fee也可以)
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i])
初始化:
dp[0][0] = -prices[i]-fee
dp[0][1] = 0
遍历顺序:从前向后遍历
打印dp数组:[[-3, 0], [-3, 0], [-3, 0], [-3, 5], [-1, 5], [-1, 8]]
代码如下:
class Solution:
def maxProfit(self, prices: List[int], fee: int) -> int:
dp = [[0]*2 for _ in range(len(prices))]
dp[0][0] = -prices[0]-fee
dp[0][1] = 0
#dp[i][0] hold the stock at day i
#dp[i][1] not hold the stock on day i
for i in range(1, len(prices)):
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]-fee)
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i])
return dp[len(prices)-1][1]