K-means是一种常用的聚类算法,用于将数据集中的观测点划分为多个组或簇。
1. 选择聚类的数量 kkk
首先,需要决定将数据集分成多少个簇。这通常是通过领域知识或者使用各种方法(如肘部法则、轮廓系数等)来选择的。
2. 初始化聚类中心
随机选择 kkk 个数据点作为初始的聚类中心。这些聚类中心可以是从数据集中随机选择的点,或者通过一些启发式方法选择。
3. 分配数据点到最近的聚类中心
对于每个数据点,计算它与各个聚类中心的距离,并将其分配到距离最近的聚类中心所属的簇。
4. 更新聚类中心
对于每个簇,计算簇中所有数据点的均值(或者其他聚类中心更新规则),得到新的聚类中心。
5. 重复步骤 3 和 4
重复步骤 3 和 4,直到满足停止条件。停止条件可以是达到最大迭代次数、聚类中心变化小于某个阈值,或者簇分配不再改变。
6. 输出结果
当停止条件满足后,算法收敛并输出最终的聚类结果,即每个数据点所属的簇。
7. 结果分析
分析每个簇的特征和聚类中心,以理解每个簇代表的含义,并评估聚类的质量。
注意事项和优化:
- 初始聚类中心的选择:初始聚类中心的选择可能会影响最终的聚类结果,因此有时会尝试多次运行算法,选择最优的聚类结果。
- 处理异常值:K-means 对异常值敏感,可能需要预处理数据,或者考虑使用其他对异常值较为鲁棒的聚类方法。
- 数据归一化:由于K-means使用距离作为相似性度量,因此通常建议对数据进行归一化,以避免某些特征对距离计算的影响过大。
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluste

最低0.47元/天 解锁文章
799

被折叠的 条评论
为什么被折叠?



