【代码模板】K-means聚类

K-means是一种常用的聚类算法,用于将数据集中的观测点划分为多个组或簇

1. 选择聚类的数量 kkk

首先,需要决定将数据集分成多少个簇。这通常是通过领域知识或者使用各种方法(如肘部法则、轮廓系数等)来选择的。

2. 初始化聚类中心

随机选择 kkk 个数据点作为初始的聚类中心。这些聚类中心可以是从数据集中随机选择的点,或者通过一些启发式方法选择。

3. 分配数据点到最近的聚类中心

对于每个数据点,计算它与各个聚类中心的距离,并将其分配到距离最近的聚类中心所属的簇。

4. 更新聚类中心

对于每个簇,计算簇中所有数据点的均值(或者其他聚类中心更新规则),得到新的聚类中心。

5. 重复步骤 3 和 4

重复步骤 3 和 4,直到满足停止条件。停止条件可以是达到最大迭代次数、聚类中心变化小于某个阈值,或者簇分配不再改变。

6. 输出结果

当停止条件满足后,算法收敛并输出最终的聚类结果,即每个数据点所属的簇。

7. 结果分析

分析每个簇的特征和聚类中心,以理解每个簇代表的含义,并评估聚类的质量。

注意事项和优化:

  • 初始聚类中心的选择:初始聚类中心的选择可能会影响最终的聚类结果,因此有时会尝试多次运行算法,选择最优的聚类结果。
  • 处理异常值:K-means 对异常值敏感,可能需要预处理数据,或者考虑使用其他对异常值较为鲁棒的聚类方法。
  • 数据归一化:由于K-means使用距离作为相似性度量,因此通常建议对数据进行归一化,以避免某些特征对距离计算的影响过大。
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.cluste
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎鸽鸽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值