机器学习(六)——逻辑回归

1.逻辑回归概述

逻辑回归(Logistic Regression)是一种适用于分类问题的机器学习算法。该算法的主要目的是用于预测一个特定事件的发生概率。逻辑回归的输出是一个介于0和1之间的概率值,表示某样本属于某个类别的概率大小。

逻辑回归常用于二分类问题的预测,比如判断邮件是否为垃圾邮件、肿瘤是恶性还是良性等,也可以通过构建多个二分类模型来解决多分类问题。

2.logistic回归原理

2.1 线性模型与回归

线性模型一般形式:  

f ( x )= w1x1+w2x2+...+wnxn + b

向量形式:

f ( x )= w^{T} x + b

2.2 最小二乘法与参数求解

分别对w和b求导,可得:

得到:

\overline{x}= \frac{1}{m}\sum_{i=1}^{m}xi

2.3 Sigmoid函数

Sigmoid函数是logistic回归模型中使用的一种特殊类型的函数。它被用来将输入的线性组合转换成0到1之间的概率值,通常用于二元分类问题中作为逻辑回归模型的激活函数。在logistic回归中,Sigmoid函数被应用到线性模型的预测值上,将其转换为表示正类别的概率。在训练过程中,通过最大化对数似然函数的方法,模型利用数据优化Sigmoid函数的参数,使得模型对样本的分类结果更加准确。

y=\frac{1}{1+e^{-z}}=\frac{1}{1+e^{w^{T}+b}}

3 logistic回归的实现

import numpy as np


class LogisticRegression:
    def __init__(self, learning_rate=0.01, num_iterations=1000):
        self.learning_rate = learning_rate
        self.num_iterations = num_iterations
        self.weights = None
        self.bias = None
        
    def fit(self, X, y):
        # Initialize weights and bias
        num_samples, num_features = X.shape
        self.weights = np.zeros(num_features)
        self.bias = 0
        
        # Gradient descent training
        for _ in range(self.num_iterations):
            linear_model = np.dot(X, self.weights) + self.bias
            y_predicted = self._sigmoid(linear_model)
            
            dw = (1/num_samples) * np.dot(X.T, (y_predicted - y))
            db = (1/num_samples) * np.sum(y_predicted - y)
            
            self.weights -= self.learning_rate * dw
            self.bias -= self.learning_rate * db
            
    def predict(self, X):
        linear_model = np.dot(X, self.weights) + self.bias
        y_predicted = self._sigmoid(linear_model)
        y_predicted_cls = [1 if i > 0.5 else 0 for i in y_predicted]
        return y_predicted_cls
    
    def _sigmoid(self, x):
        return 1 / (1 + np.exp(-x))

# Test
if __name__ == "__main__":
    np.random.seed(0)
    X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]]
    y = np.array([0]*20 + [1]*20)

    model = LogisticRegression()
    model.fit(X, y)

    import matplotlib.pyplot as plt
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', edgecolors='k', s=50)
    plt.xlabel('X1')
    plt.ylabel('X2')
    xx, yy = np.mgrid[-5:5:.01, -5:5:.01]
    grid = np.c_[xx.ravel(), yy.ravel()]
    pred = np.array(model.predict(grid)).reshape(xx.shape)
    plt.contourf(xx, yy, pred, alpha=0.3, cmap='viridis')
    plt.title('Logistic Regression Decision Boundary')
    plt.show()

运行结果

4 总结

logistic回归的优缺点:

优点:  简单而有效,logistic回归是一种线性分类器,简单易于实现和理解。相对于高复杂度的模型如神经网络,logistic回归对于训练数据量较小的情况下往往不容易发生过拟合。logistic回归能够进行特征选择,处理不相关的特征。

缺点: 由于logistic回归是一个线性分类器,所以它可能无法很好地处理非线性分类问题。 对异常值敏感logistic回归对异常值比较敏感,有可能影响模型的性能。不能处理复杂关系:logistic回归受限于线性决策面,无法很好地处理复杂的分类关系。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值