本专栏持续更新牛客题目解题思路及代码,欢迎感兴趣的朋友收藏⭐专栏持续关注,共同进步
专栏直达地址:牛客刷题
描述
给一个长度为n链表,若其中包含环,请找出该链表的环的入口结点,否则,返回null。
数据范围: n≤10000,1 <= 结点值 <= 10000
要求:空间复杂度 O(1),时间复杂度 O(n)
例如,输入{1,2},{3,4,5}时,对应的环形链表如下图所示:
可以看到环的入口结点的结点值为3,所以返回结点值为3的结点。
输入描述:
输入分为2段,第一段是入环前的链表部分,第二段是链表环的部分,后台会根据第二段是否为空将这两段组装成一个无环或者有环单链表
返回值描述:
返回链表的环的入口结点即可,我们后台程序会打印这个结点对应的结点值;若没有,则返回对应编程语言的空结点即可。
示例1
输入:{1,2},{3,4,5}
返回值:3
说明:返回环形链表入口结点,我们后台程序会打印该环形链表入口结点对应的结点值,即3
示例2
输入:{1},{}
返回值:"null"
说明:没有环,返回对应编程语言的空结点,后台程序会打印"null"
示例3
输入:{},{2}
返回值:2
说明:环的部分只有一个结点,所以返回该环形链表入口结点,后台程序打印该结点对应的结点值,即2
解题思路
是BM6 判断链表中是否有环 的进阶版,要判断环的入口结点,因为快指针一定先入环,慢指针后入环,假设快慢指针在环中,快指针走了m圈、慢指针走了n圈后相遇
从开始到环入口一共有x的结点
从入口结点到相遇位置有y个结点
从相遇位置到入口结点有z个结点
则快指针一共走了 x + m ( y + z ) + y , 慢指针走了 x + n ( y + z ) + y,因为快指针是慢指针速度的两倍,所以 x + m ( y + z ) + y = 2 ( x + n ( y + z ) + y ) --> ( m - 2n ) ( y + z ) = x + y , 所以可以说明,从开始到相遇经过的结点,是环的整数倍。所以快慢指针相遇后,可以让快指针回到开始位置,然后快慢指针同时每次移动一个结点,当两个指针再次相遇,那个位置就是入口位置
如果不太能理解,可以试想一下,假设 m - 2n = 1 ,也就是说从开始到相遇的距离等于一个环的距离,那么一个指针从开始位置出发,一个指针从相遇位置出发,那么两个指针一定是从入口处开始一起走到相遇位置的
需要注意的点:
- 先判断链表是否有环,如果有环再让快指针回到开始位置,两个指针同时逐个位置移动,相遇位置即为入口位置
代码
/*
struct ListNode {
int val;
struct ListNode *next;
ListNode(int x) :
val(x), next(NULL) {
}
};
*/
class Solution {
public:
ListNode* EntryNodeOfLoop(ListNode* pHead) {
ListNode* fast = pHead;
ListNode* slow = pHead;
// 还是正常判断链表是否有环
while(fast && fast->next)
{
fast = fast->next->next;
slow = slow->next;
if(fast == slow)
{
// 判断出链表有环后,进行处理
fast = pHead;
while(fast != slow)
{
fast = fast->next;
slow = slow->next;
}
return fast;
}
}
return nullptr;
}
};