PTA:7-10 旅游规划(C语言)

该程序采用C语言实现,通过弗洛伊德算法计算给定城市间最短路径及最低费用。输入包含城市数量、高速公路信息,程序会输出从出发地到目的地的最短路径长度和总费用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:

输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:

在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:

4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20

输出样例:

3 40

参考代码:

/**
 * 7-10 旅游规划
 *  最短路径  弗洛伊德算法
 */

#include<stdio.h>

#define MAXN 500
#define ERROR -1
#define Infinite 65534

int N, M, S, D;//城市的个数 高速公路的条数 出发地 目的地
int Dist[MAXN][MAXN], Cost[MAXN][MAXN];//距离与花费矩阵
int dist[MAXN], cost[MAXN], visit[MAXN];//最短距离与花费 标记数组

void Inicialization(void);

void FindTheWay(void);

int FindMinWay(void);

int main() {
    scanf("%d %d %d %d", &N, &M, &S, &D);//城市的个数 高速公路的条数 出发地 目的地
    Inicialization();//初始化
    FindTheWay();
    printf("%d %d", dist[D], cost[D]);
    return 0;
}

void Inicialization(void) {
    for (int i = 0; i < N; i++)
        for (int j = 0; j < N; j++)
            Dist[i][j] = Cost[i][j] = Infinite;//矩阵初始化为无限值

    int v1, v2, d, c;
    for (int i = 0; i < M; i++) {
        scanf("%d %d %d %d", &v1, &v2, &d, &c);
        Dist[v1][v2] = Dist[v2][v1] = d;//输入距离路径
        Cost[v1][v2] = Cost[v2][v1] = c;//输入花费路径
    }

    for (int i = 0; i < N; i++)
        dist[i] = cost[i] = Infinite;//矩阵初始化为无限值
}

void FindTheWay(void) {
    dist[S] = cost[S] = 0;//出发地为0
    visit[S] = 1;//出发地访问标记
    int v;
    for (int i = 0; i < N; i++)//记录出发地直达的路径
        if (!visit[i] && Dist[S][i] < Infinite) //如果没访问 且有路径
        {
            dist[i] = Dist[S][i];
            cost[i] = Cost[S][i];
        }
    while (1) {
        v = FindMinWay();//找出最短出发地直达且未访问的城市
        if (v == ERROR) break;
        visit[v] = 1;//找出城市的访问标记

        for (int i = 0; i < N; i++)//循环每个城市
            if (!visit[i] && Dist[v][i] < Infinite)//如果未访问且有路径
                if ((dist[v] + Dist[v][i] < dist[i]) ||
                    (dist[v] + Dist[v][i] == dist[i] && cost[v] + Cost[v][i] < cost[i])) {//如果从先到该城市再到另一城市距离小于直接到另一城市
                    //或者从先到该城市再到另一城市距离等于直接到另一城市,且花费少
                    dist[i] = dist[v] + Dist[v][i];//更新最短路径
                    cost[i] = cost[v] + Cost[v][i];
                }
    }
}

int FindMinWay(void) {
    int min = Infinite;
    int temp;

    for (int i = 0; i < N; i++)//循环每个城市 找出最短的路径
        if (!visit[i] && dist[i] < min) {
            min = dist[i];
            temp = i;
        }
    if (min == Infinite) return ERROR;
    return temp;
}


### Dijkstra算法PTA平台上的实现 Dijkstra算法是一种用于解决单源最短路径问题的经典算法,其核心思想基于贪心策略和动态规划的思想[^1]。具体来说,它通过逐步扩展已知的最短路径集合来找到从起点到其他所有节点的最短距离。 #### 题目背景 在PTA平台上有一类题目涉及到了Dijkstra算法的应用,比如“旅游规划”这一题[^2]。这类题目通常会给出一张图(可以用邻接矩阵表示),并要求计算两个指定节点之间的最短路径及其费用最小化的情况[^4]。 以下是针对此类问题的一种通用解决方案: --- #### 解决方案概述 为了满足题目需求,我们需要设计一个能够处理带权无向图或者有向图的程序,并且支持寻找既是最短又花费最少的路径。下面提供了一个完整的C++版本代码示例,其中包含了详细的注释以便于理解和调试。 ```cpp #include <iostream> #include <vector> #include <queue> #include <climits> using namespace std; struct Edge { int to; // 边指向的目标顶点编号 int distance; // 距离权重 int cost; // 过路费权重 }; // 定义优先队列中的比较函数,按照 (当前累计的距离, 当前累计的成本) 排序 struct CompareNode { bool operator()(const pair<int, pair<long long, long long>> &a, const pair<int, pair<long long, long long>> &b) { if (a.second.first != b.second.first) return a.second.first > b.second.first; else return a.second.second > b.second.second; } }; int main() { int n, m, startCity, endCity; cin >> n >> m >> startCity >> endCity; vector<vector<Edge>> graph(n + 1); // 图存储结构,索引从1开始计数 while (m--) { // 输入边的信息 int u, v, d, c; cin >> u >> v >> d >> c; graph[u].push_back({v, d, c}); graph[v].push_back({u, d, c}); // 如果是无向图则加上反方向的边 } // 初始化状态数组 vector<pair<long long, long long>> distCost(n + 1, {LLONG_MAX, LLONG_MAX}); priority_queue< pair<int, pair<long long, long long>>, vector<pair<int, pair<long long, long long>>>, CompareNode> pq; distCost[startCity] = {0, 0}; pq.push({startCity, {0, 0}}); while (!pq.empty()) { auto current = pq.top(); pq.pop(); int node = current.first; long long curDist = current.second.first; long long curCost = current.second.second; if (curDist > distCost[node].first || (curDist == distCost[node].first && curCost > distCost[node].second)) continue; for (auto &edge : graph[node]) { int nextNode = edge.to; long long newDistance = curDist + edge.distance; long long newCost = curCost + edge.cost; if (newDistance < distCost[nextNode].first || (newDistance == distCost[nextNode].first && newCost < distCost[nextNode].second)) { distCost[nextNode] = {newDistance, newCost}; pq.push({nextNode, {newDistance, newCost}}); } } } cout << "Shortest Distance: " << distCost[endCity].first << endl; cout << "Minimum Cost: " << distCost[endCity].second << endl; return 0; } ``` 上述代码实现了带有双重优化条件下的Dijkstra算法变体——即当存在多条相同长度的路径时选择成本最低者作为最终结果。 --- #### 关键概念解析 1. **数据结构的选择** 使用`priority_queue`配合自定义比较器可以高效地选取下一个待访问结点,从而减少不必要的冗余操作。 2. **状态转移方程** 对于每一个可能到达的新位置\( \text{next} \),更新它的最优解为\(\min (\text{dist}[node]+\text{distance}, \text{cost}[node]+\text{fee})\) ,这里需要注意的是只有更优的情况下才会触发新的迭代过程。 3. **边界情况考虑** 特殊情况下如输入的城市之间不存在任何连接关系,则应返回错误提示或特殊标记表明不可达性。 --- ### 总结 综上所述,在面对类似于PTA平台提出的“旅游规划”等问题时,运用改进版的Dijkstra算法不仅能满足基本功能需求还能兼顾额外约束条件的要求。此方法具有较高的实用价值并且易于维护修改适应不同场景的变化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值