chita第六章

CHITA 作业六:同态、第一同构定理

  1. 根据命题 9.5 9.5 9.5 H \mathbb{H} H G \mathbb{G} G 的正规子群当且仅当对任意 g ∈ G g\in\mathbb{G} gG,有 g H g − 1 = H g\mathbb{H}g^{-1}=\mathbb{H} gHg1=H。后置条件可以放松到只要求 g H g − 1 ⊂ H g\mathbb{H}g^{-1}\sub\mathbb{H} gHg1H。请给出证明。
    要证:后置条件可放松至 g H g − 1 ⊂ H g\mathbb{H}g^{-1}\sub\mathbb{H} gHg1H
    (1) 需有: g H g − 1 ⊂ H g\mathbb{H}g^{-1}\sub\mathbb{H} gHg1H 则有: g H = H g g\mathbb{H}=\mathbb{H}g gH=Hg(正规子群)
    (2) 且: H \mathbb{H} H G \mathbb{G} G 的正规子群时, ∀ g ∈ G \forall g\in\mathbb{G} gG 满足 g H g − 1 ⊂ H g\mathbb{H}g^{-1}\sub\mathbb{H} gHg1H(双向成立)
  • g H g − 1 ⊂ H g\mathbb{H}g^{-1}\sub\mathbb{H} gHg1H 有: g H = H g g\mathbb{H}=\mathbb{H}g gH=Hg
    同 左 乘 g − 1 : H g − 1 ⊂ g − 1 H 同 右 乘 g : g H ⊂ H g ∵ g 为 G 的 任 意 元 素 ∴ 进 行 g 与 g − 1 的 替 换 得 到 : H g ⊂ g H 双 向 成 立 则 有 : g H = H g 同左乘 g^{-1}:\mathbb{H}g^{-1}\sub g^{-1}\mathbb{H}\\ 同右乘 g: g\mathbb{H}\sub\mathbb{H}g\\ \because g 为 \mathbb{G} 的任意元素\\ \therefore 进行 g 与 g^{-1} 的替换\\ 得到:\mathbb{H}g\sub g\mathbb{H} 双向成立\\ 则有:g\mathbb{H}=\mathbb{H}g g1Hg1g1HggHHggGgg1HggHgH=Hg

  • H \mathbb{H} H G \mathbb{G} G 的正规子群, ∀ g ∈ G \forall g\in\mathbb{G} gG ,有 g H g − 1 ⊂ H g\mathbb{H}g^{-1}\sub\mathbb{H} gHg1H
    由 定 义 : ∀ g ∈ G 有 g H = H g 同 样 地 : g − 1 H = H g − 1 已 知 正 规 子 群 间 的 乘 法 为 良 定 义 : ( g H ) ( H g − 1 ) = ( H g ) ( g − 1 H ) 由 封 闭 性 及 结 合 律 : g H g − 1 = H 显 然 有 : g H g − 1 ⊂ H 由定义:\forall g\in\mathbb{G} 有 g\mathbb{H}=\mathbb{H}g\\ 同样地:g^{-1}\mathbb{H}=\mathbb{H}g^{-1}\\ 已知正规子群间的乘法为良定义:\\ (g\mathbb{H})(\mathbb{H}g^{-1})=(\mathbb{H}g)(g^{-1}\mathbb{H})\\ 由封闭性及结合律:g\mathbb{H}g^{-1}=\mathbb{H}\\ 显然有:g\mathbb{H}g^{-1}\sub\mathbb{H} gGgH=Hgg1H=Hg1(gH)(Hg1)=(Hg)(g1H)gHg1=HgHg1H

  1. 定义映射 ϕ \phi ϕ G ↦ G \mathbb{G}\mapsto\mathbb{G} GG 为: g ↦ g 2 g\mapsto g^2 gg2。请证明 ϕ \phi ϕ 是一种群同态当且仅当 G \mathbb{G} G 是阿贝尔群。
  • ϕ \phi ϕ 是一种群同态,则 G \mathbb{G} G 为阿贝尔群
    已 知 : ϕ 映 射 为 群 同 态 映 射 已知:\phi 映射为群同态映射 ϕ
    那 么 : ∀ a , b ∈ G 有 ϕ ( a ∘ b ) = a 2 × b 2 = b 2 × a 2 = ϕ ( b ∘ a ) 得 到 原 群 为 阿 贝 尔 群 那么:\forall a,b\in\mathbb{G} 有\\ \phi(a\circ b)=a^2\times b^2=b^2\times a^2=\phi(b\circ a)\\ 得到原群为阿贝尔群 a,bGϕ(ab)=a2×b2=b2×a2=ϕ(ba)

  • G \mathbb{G} G 为阿贝尔群,则 ϕ \phi ϕ 映射为群同态映射
    ∀ a , b ∈ G 那 么 : ϕ ( b ∘ a ) = ( b ∘ a ) 2 = b 2 × a 2 ∴ ϕ 为 群 同 态 映 射 \forall a,b\in\mathbb{G}\\ 那么:\phi(b\circ a)=(b\circ a)^2=b^2\times a^2\\ \therefore \phi 为群同态映射 a,bGϕ(ba)=(ba)2=b2×a2ϕ

  1. ϕ \phi ϕ G ↦ H \mathbb{G}\mapsto\mathbb{H} GH 是一种群同态。请证明:如果 G \mathbb{G} G 是循环群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是循环群;如果 G \mathbb{G} G 是交换群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是交换群。
  • 如果 G \mathbb{G} G 是循环群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是循环群
    ∵ G 为 循 环 群 ∴ ∃ g 为 G 生 成 元 且 又 有 ∀ k ∈ G 可 得 a , b ∈ G 使 : a ∘ b = k 又 ∵ ϕ : G ↦ H 为 群 同 态 映 射 ∴ 原 式 有 ϕ ( a ∘ b ) = ϕ ( k ) = ϕ ( a ) × ϕ ( b ) 那 么 有 : ϕ ( g 2 ) = ϕ ( g ∘ g ) = ϕ ( g ) × ϕ ( g ) = ( ϕ ( g ) ) 2 由 此 推 : ϕ ( g n ) = ϕ ( g ) n G 的 元 素 均 可 由 ϕ ( g ) 生 成 ∴ ϕ ( G ) 也 是 循 环 群 \because \mathbb{G} 为循环群\\ \therefore \exist g 为 \mathbb{G} 生成元\\ 且又有 \forall k\in\mathbb{G} 可得 a,b\in\mathbb{G}\\ 使:a\circ b=k\\ 又 \because \phi: \mathbb{G}\mapsto\mathbb{H} 为群同态映射\\ \therefore 原式有 \phi(a\circ b)=\phi(k)=\phi(a)\times\phi(b)\\ 那么有:\phi(g^2)=\phi(g\circ g)=\phi(g)\times\phi(g)=(\phi(g))^2\\ 由此推:\phi(g^n)=\phi(g)^n\\ \mathbb{G} 的元素均可由 \phi(g) 生成\\ \therefore \phi(\mathbb{G}) 也是循环群 GgGkGa,bG使ab=kϕ:GHϕ(ab)=ϕ(k)=ϕ(a)×ϕ(b)ϕ(g2)=ϕ(gg)=ϕ(g)×ϕ(g)=(ϕ(g))2ϕ(gn)=ϕ(g)nGϕ(g)ϕ(G)

  • 如果 G \mathbb{G} G 是交换群,则 ϕ ( G ) \phi(\mathbb{G}) ϕ(G) 也是交换群
    已 知 : G 为 交 换 群 那 么 : ∀ a , b ∈ G 有 ϕ ( a ∘ b ) = ϕ ( a ) × ϕ ( b ) , ϕ ( b ∘ a ) = ϕ ( a ∘ b ) ϕ ( b ∘ a ) = b × a = a × b ∴ ϕ ( G ) 为 交 换 群 已知:\mathbb{G} 为交换群\\ 那么:\forall a,b\in\mathbb{G} 有 \phi(a\circ b)=\phi(a)\times \phi(b), \phi(b\circ a)=\phi(a\circ b)\\ \phi(b\circ a)=b\times a=a\times b\\ \therefore \phi(\mathbb{G}) 为交换群 Ga,bGϕ(ab)=ϕ(a)×ϕ(b),ϕ(ba)=ϕ(ab)ϕ(ba)=b×a=a×bϕ(G)

  1. 证明:如果 H \mathbb{H} H 是群 G \mathbb{G} G 上指标为 2 2 2 的子群,则 H \mathbb{H} H G \mathbb{G} G 的正规子群。
  • 任取 h ∈ H h\in\mathbb{H} hH
    那 么 有 : h G = G h = H 为 正 规 子 群 那么有:h\mathbb{G}=\mathbb{G}h=\mathbb{H} 为正规子群 hG=Gh=H

  • 任取 h ∉ H h\notin\mathbb{H} h/H
    那 么 : h G ≠ H ∧ G h ≠ H 已 知 : H 是 群 G 上 指 标 为 2 的 子 群 ∴ 而 且 对 于 G 左 陪 集 与 右 陪 集 个 数 相 同 ( 同 一 等 价 关 系 ) G = H ∪ h H = H ∪ H h ∴ h H = H h 可 得 其 为 正 规 子 群 那么:h\mathbb{G}\neq\mathbb{H}\wedge\mathbb{G}h\neq\mathbb{H}\\ 已知:\mathbb{H} 是群 \mathbb{G} 上指标为 2 的子群\\ \therefore 而且对于 \mathbb{G} 左陪集与右陪集个数相同(同一等价关系)\\ \mathbb{G}=\mathbb{H}\cup h\mathbb{H}=\mathbb{H}\cup \mathbb{H}h\\ \therefore h\mathbb{H}=\mathbb{H}h 可得其为正规子群 hG=HGh=HHG2GG=HhH=HHhhH=Hh

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值