NNDL 作业11

习题6-4  推导LSTM网络中参数的梯度, 并分析其避免梯度消失的效果

LSTM的更新公式

在推导时候,看了朋友给推荐的视频,感觉还是挺不错的。

视频up主结论图

其实这些参数几乎都是使用链式法则进行梯度更新的,以其中一个参数为例

通过链式法则展开就是

其他的参数也是大差不差。然后在更新过程中,梯度会乘以一个常数,这样就可以避免梯度消失的问题。然后我也查阅了资料去认真看LSTM怎么避免梯度消失的。hhh也是看的朋友推荐的博客。在这篇博客里,他推出了梯度的路径

进一步推导得

根据公式,如果要计算时刻k的,简单的利用上式进行乘t-k+1次即可。也就是遗忘门可以控制上述的偏导的值
,又因为上述偏导与ft前面三项值有关,所以他的值就不会局限于[0,1],所以他会大于1,所以缓解了梯度消失。所以总结来看避免梯度消失原因为:

 1.cell状态的加法更新策略使得梯度传递更恰当,使得梯度更新有可能大于1。

 2.门控单元可以决定遗忘多少梯度,他们可以在不同的时刻取不同的值。这些值都是通过隐层状态和输入的数据学习到的。

习题6-3P  编程实现下图LSTM运行过程

1. 使用Numpy实现LSTM算子

import numpy as np
 
x = np.array([[1, 0, 0, 1],
              [3, 1, 0, 1],
              [2, 0, 0, 1],
              [4, 1, 0, 1],
              [2, 0, 0, 1],
              [1, 0, 1, 1],
              [3, -1, 0, 1],
              [6, 1, 0, 1],
              [1, 0, 1, 1]])
# x = np.array([
#               [3, 1, 0, 1],
#
#               [4, 1, 0, 1],
#               [2, 0, 0, 1],
#               [1, 0, 1, 1],
#               [3, -1, 0, 1]])
inputGate_W = np.array([0, 100, 0, -10])
outputGate_W = np.array([0, 0, 100, -10])
forgetGate_W = np.array([0, 100, 0, 10])
c_W = np.array([1, 0, 0, 0])
 
 
def sigmoid(x):
    y = 1 / (1 + np.exp(-x))
    if y >= 0.5:
        return 1
    else:
        return 0
 
 
temp = 0
y = []
c = []
for input in x:
    c.append(temp)
    temp_c = np.sum(np.multiply(input, c_W))
    temp_input = sigmoid(np.sum(np.multiply(input, inputGate_W)))
    temp_forget = sigmoid(np.sum(np.multiply(input, forgetGate_W)))
    temp_output = sigmoid(np.sum(np.multiply(input, outputGate_W)))
    temp = temp_c * temp_input + temp_forget * temp
    y.append(temp_output * temp)
print("memory:",c)
print("y     :",y)

2. 使用nn.LSTMCell实现

import torch
import torch.nn as nn
 
 
# 输入数据 x 维度需要变换,因为LSTMcell接收的是(time_steps,batch_size,input_size)
# time_steps = 9, batch_size = 1, input_size = 4
x = torch.tensor([[1, 0, 0, 1],
                  [3, 1, 0, 1],
                  [2, 0, 0, 1],
                  [4, 1, 0, 1],
                  [2, 0, 0, 1],
                  [1, 0, 1, 1],
                  [3, -1, 0, 1],
                  [6, 1, 0, 1],
                  [1, 0, 1, 1]], dtype=torch.float)
x = x.unsqueeze(1)
# LSTM的输入size和隐藏层size
input_size = 4
hidden_size = 1
 
# 定义LSTM单元
lstm_cell = nn.LSTMCell(input_size=input_size, hidden_size=hidden_size, bias=False)
 
lstm_cell.weight_ih.data = torch.tensor([[0, 100, 0, 10],   # forget gate
                                         [0, 100, 0, -10],  # input gate
                                        [1, 0, 0, 0], # output gate
                                        [0, 0, 100, -10]]).float()  # cell gate
lstm_cell.weight_hh.data = torch.zeros([4 * hidden_size, hidden_size])
#https://runebook.dev/zh/docs/pytorch/generated/torch.nn.lstmcell
 
hx = torch.zeros(1, hidden_size)
cx = torch.zeros(1, hidden_size)
outputs = []
for i in range(len(x)):
    hx, cx = lstm_cell(x[i], (hx, cx))
    outputs.append(hx.detach().numpy()[0][0])
outputs_rounded = [round(x) for x in outputs]
print(outputs_rounded)

其中的参数也是查阅其他资料以及同学的博客弄懂的

Parameters

input_size – 输入 x 中预期特征的数量
hidden_​​size – 隐藏状态下的特征数量 h
偏差 – 如果 False ,则该层不使用偏差权重 b_ih 和 b_hh 。默认值: True
输入:输入,(h_0, c_0)

形状 (batch, input_size) 的输入:包含输入特征的张量
h_0 形状为 (batch, hidden_size) :包含批次中每个元素的初始隐藏状态的张量。
c_0 形状为 (batch, hidden_size) :包含批次中每个元素的初始单元状态的张量。

如果未提供 (h_0, c_0) ,则 h_0 和 c_0 均默认为零。

输出:(h_1,c_1)

h_1 形状为 (batch, hidden_size) :包含批次中每个元素的下一个隐藏状态的张量
c_1 形状为 (batch, hidden_size) :包含批次中每个元素的下一个单元状态的张量
Variables:

~LSTMCell.weight_ih – 可学习的输入隐藏权重,形状为 (4*hidden_size, input_size)
~LSTMCell.weight_hh – 可学习的隐藏权重,形状为 (4*hidden_size, hidden_size)
~LSTMCell.bias_ih – 可学习的输入隐藏偏差,形状为 (4*hidden_size)
~LSTMCell.bias_hh – 可学习的隐藏-隐藏偏差,形状为 (4*hidden_size)

3. 使用nn.LSTM实现

import torch
import torch.nn as nn
 
 
# 输入数据 x 维度需要变换,因为 LSTM 接收的是 (sequence_length, batch_size, input_size)
# sequence_length = 9, batch_size = 1, input_size = 4
x = torch.tensor([[1, 0, 0, 1],
                  [3, 1, 0, 1],
                  [2, 0, 0, 1],
                  [4, 1, 0, 1],
                  [2, 0, 0, 1],
                  [1, 0, 1, 1],
                  [3, -1, 0, 1],
                  [6, 1, 0, 1],
                  [1, 0, 1, 1]], dtype=torch.float)
x = x.unsqueeze(1)
 
# LSTM 的输入 size 和隐藏层 size
input_size = 4
hidden_size = 1
 
# 定义 LSTM 模型
lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, bias=False)
 
# 设置 LSTM 的权重矩阵
lstm.weight_ih_l0.data = torch.tensor([[0, 100, 0, 10],   # forget gate
                                        [0, 100, 0, -10],  # input gate
                                        [1, 0, 0, 0],      # output gate
                                        [0, 0, 100, -10]]).float()  # cell gate
lstm.weight_hh_l0.data = torch.zeros([4 * hidden_size, hidden_size])
 
# 初始化隐藏状态和记忆状态
hx = torch.zeros(1, 1, hidden_size)
cx = torch.zeros(1, 1, hidden_size)
 
# 前向传播
outputs, (hx, cx) = lstm(x, (hx, cx))
outputs = outputs.squeeze().tolist()
 
# print(outputs)
outputs_rounded = [round(x) for x in outputs]
print(outputs_rounded)

Parameters

input_size – 输入 x 中预期特征的数量
hidden_​​size – 隐藏状态下的特征数量 h
num_layers – 循环层数。例如,设置 num_layers=2 意味着将两个 LSTM 堆叠在一起形成 stacked LSTM ,第二个 LSTM 接收第一个 LSTM 的输出并计算最终结果。默认值:1
偏差 – 如果 False ,则该层不使用偏差权重 b_ih 和 b_hh 。默认值: True
batch_first – 如果是 True ,则输入和输出张量提供为(batch、seq、feature)。默认: False
dropout – 如果非零,则在除最后一层之外的每个 LSTM 层的输出上引入 Dropout 层,dropout 概率等于 dropout 。默认值:0
双向 – 如果是 True ,则成为双向 LSTM。默认: False
proj_size – 如果是 > 0 ,将使用具有相应大小投影的 LSTM。默认值:0
输入:输入,(h_0, c_0)

形状 (seq_len, batch, input_size) 的输入:包含输入序列特征的张量。输入也可以是打包的可变长度序列。有关详细信息,请参阅 torch.nn.utils.rnn.pack_padded_sequence() 或 torch.nn.utils.rnn.pack_sequence() 。
h_0 形状为 (num_layers * num_directions, batch, hidden_size) :包含批次中每个元素的初始隐藏状态的张量。如果 LSTM 是双向的,则 num_directions 应为 2,否则应为 1。如果指定了 proj_size > 0 ,则形状必须为 (num_layers * num_directions, batch, proj_size) 。
c_0 形状为 (num_layers * num_directions, batch, hidden_size) :包含批次中每个元素的初始单元状态的张量。

如果未提供 (h_0, c_0) ,则 h_0 和 c_0 均默认为零。

输出:输出,(h_n, c_n)

形状 (seq_len, batch, num_directions * hidden_size) 的输出:对于每个 t ,包含来自 LSTM 最后一层的输出特征 (h_t) 的张量。如果 torch.nn.utils.rnn.PackedSequence 作为输入,输出也将是压缩序列。如果指定 proj_size > 0 ,输出形状将为 (seq_len, batch, num_directions * proj_size) 。

对于未包装的情况,可以使用 output.view(seq_len, batch, num_directions, hidden_size) 来区分方向,向前和向后分别是方向 0 和 1 。同样,在包装盒中,方向可以分开。

h_n 形状为 (num_layers * num_directions, batch, hidden_size) :包含 t = seq_len 隐藏状态的张量。如果指定了 proj_size > 0 ,则 h_n 形状将为 (num_layers * num_directions, batch, proj_size) 。

与输出一样,可以使用 h_n.view(num_layers, num_directions, batch, hidden_size) 来分离层,对于 c_n 也类似。

c_n 形状为 (num_layers * num_directions, batch, hidden_size) :包含 t = seq_len 细胞状态的张量。

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值