广搜(bfs)和 深搜(dfs)(新手)

本文介绍了广度优先搜索(BFS)和深度优先搜索(DFS),分别从蔓延扩散和深度探索的角度,详细解读了它们在迷宫问题中的应用,包括C语言实现的网迷宫问题和洛谷上的迷宫问题。作者强调了两种搜索算法的特点及适用场景,特别是BFS的最短路径特性。
摘要由CSDN通过智能技术生成

广搜(bfs)和 深搜(dfs)(新手)

先从广搜说起(bfs)

广搜,字面感觉就是广面的搜索,其实就是这样的,我认为可以把广度搜索看成一步步的蔓延,但是不一定要遍历到所有的元素,因为一旦你达到了边界的条件,问题就可以得到解决了,剩余的元素不需要再去遍历了;广搜,我认为是以队列形式进行动态蔓延,此处动态亦顺时针方向轮流,每一个循环的head的x,y坐标在不越界的情况下,可以向四个方向蔓延,一般,我们认为这四个方向是右—>下—>左—>上;其实无论是广度搜索还是深度搜索,最重要的就是你在这一层循环中,你要做什么,并且要符合规定(我认为通常是数组越界问题);根据广搜的特点,我又从网上查了下,理解了一番之后,广搜适合于解决一个图中的最短的路径的问题,因为刚才提到了广搜不会遍历图中所有的元素,因为达到了边界条件之后(也就是问题解决了之后),它会直接break;所以此路径必为最短;

今天做了一天了快这一道题,其实不难,就是一直少考虑,一直没有考虑到最后一个E点这个边界条件,以此例题解释广搜。

C语言网 迷宫问题 题号1672

import java.util.Scanner;
class Queen{
	int x = 0;
	int y = 0;
	int s = 0;
}
public class bfs {
	static char c[][];  //此为 n * m地图
	static int book[][];
	static int next[][] = {{0,1},{1,0},{0,-1},{-1,0}};
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		int sss = scanner.nextInt(); //此为组数,即输入的次数
		Queen que[] = new Queen[10000];//此为存储地图中的每个元素,因为题目要求最大地图是100行,100列,故大小为100*100
		for(int i=0;i<10000;i++) {
			que[i] = new Queen();//此处别忘实例化,不然会抱空指针的错误
		}
		for(int ss=0;ss<sss;ss++) {//sss的实现
			int n = scanner.nextInt(),m = scanner.nextInt();
			int startx = 0,starty = 0,p = 0,q = 0;
			c = new char[n][m];  //此为地图
			book = new int[n][m]; //对地图上面的经过的点都要标记,初始化各个元素为0
			for(int i=0;i<n;i++) {//此处for循环把输入的地图,用二维字符数组接收
				String s = scanner.next();
				for(int j=0;j<m;j++) {
					c[i][j] = s.charAt(j);
					if(c[i][j] == 'S') {
						startx = i;
						starty = j;
					}
					if(c[i][j] == 'E') {
						p = i;
						q = j;
					}
				}
			}
			int head = 0,tail = 0,tx = 0,ty = 0;//head 为头    tail 为尾      tx 为下点横坐标	ty 为下点纵坐标
			que[tail].x = startx;
			que[tail].y = starty;
			que[tail].s = 0;
			tail++;
			book[startx][starty] = 1;//此行把起点标记
			int flag = 0;//此处为结束标志,若问题解决,将其置1
			while(head < tail) {
				for(int k=0;k<4;k++) {
					tx = que[head].x+next[k][0];
					ty = que[head].y+next[k][1];
					if(tx < 0 || tx > n-1 || ty < 0 || ty > m-1) { //此处判断越界否
						continue;
					}
					if((c[tx][ty] == '-' || c[tx][ty] == 'E') && book[tx][ty] == 0) {//此处将tx,ty加入队列中
						book[tx][ty] = 1;
						que[tail].x = tx;
						que[tail].y = ty;
						que[tail].s = que[head].s+1;
						tail++;
					}
					if(tx == p && ty == q) {
						flag = 1;
						break;
					}
				}
				if(flag == 1) {
					break;//任务完成,打破循环
				}
				head++;//此处为下一次蔓延做准备
			}
			if(flag == 1) {
				System.out.println(que[tail-1].s);
			}
			else {
				System.out.println(-1);	
			}
		}
	}
}

再论深搜(dfs)

深搜,亦先从字面意思理解,深搜他讲究的就是深度,一个方向走往深处,遍历路过的元素,如可到达边界,此便为答案之一。我认为,深搜,额额真的感觉没有什么说的,和递归相似感觉,递归思想,学过这两个搜索,递归好像没印象了,对于他们之间的关系到此,网上查阅是递归是dfs实现的一种实现手段;我从理解上面来说,我认为递归是dfs的子集;dfs是通过递归这种思想来实现的。

下面是一道例题,是洛谷上面的迷宫 ----- P1605

import java.util.Scanner;
public class dfs_01 {
	static int next[][] = {{0,1},{1,0},{0,-1},{-1,0}};//此为顺时针四个方向
	static int book[][];//标记一个深度中的元素
	static int n,m,a[][];//此处避免传参,java中的全局变量需要设置成为静态
	static int startx,starty,endx,endy;
	static int num = 0;
	static void dfs(int x,int y) {
		int tx,ty;
		if(x == endx && y == endy) {
			num++;
			return;
		}
		for(int k=0;k<4;k++) {
			tx = x+next[k][0];
			ty = y+next[k][1];//下一个点的坐标
			if(tx < 0 || tx > n-1 || ty < 0 || ty > m-1) {//判断越界否
				continue;
			}
			if(a[tx][ty] == 0 && book[tx][ty] == 0) {//下一个点若符合条件,就沿着走下去
				book[tx][ty] = 1;
				dfs(tx,ty);
				book[tx][ty] = 0;
			}
		}
	}
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		n = scanner.nextInt();
		m = scanner.nextInt();
		book = new int[n][m];
		a= new int[n][m];
		int stopNum = scanner.nextInt(),stop[][] = new int[stopNum][2];//此处记录何处有障碍
		startx = scanner.nextInt()-1;
		starty = scanner.nextInt()-1;//此处减1,亦可修改地图
		endx = scanner.nextInt()-1;
		endy = scanner.nextInt()-1;//此处减1,亦可修改地图
		int t1 = 0,t2 = 0;
		book[startx][starty] = 1;
		for(int i=0;i<stopNum;i++) {//此for循环为求出地图
			for(int j=0;j<2;j++) {
				stop[i][j] = scanner.nextInt()-1;
				if(j == 0) {
					t1 = stop[i][j];
				}
				if(j == 1) {
					t2 = stop[i][j];
				}
			}
			a[t1][t2] = 1;//若有障碍,地图上标 1
		}
		dfs(startx,starty); //传入起点,进行深搜
		System.out.println(num);
	}
}

看到AC就放心了。

屏幕截图 2022-03-12 185946.jpg
又从网上面找到了一道题,感觉能熟悉dfs,自己又做了一遍,不会的问题通过查阅资料解决,慢慢练习吧!

在这里插入图片描述

import java.util.Scanner;

class Note{
	int x;
	int y;
}
public class dfs_03 {
	static int a[][] = new int[51][51];//此为地图
	static int book[][] = new int[51][51];//此用于对每层经过的格子进行标记
	static int flag = 0;//是否能接通
	static int n,m;
	static Note note[] = new Note[100];
	static int top = 0;
	static void dfs(int x,int y,int front){
		if(x == n && y == m+1) {// y == m+1 此处应该注意,最后一个水管必定紧贴着格子右边缘,下一个必定在此行下列 
			flag = 1;
			for(int i=0;i<top;i++) {
				System.out.print("("+note[i].x+","+note[i].y+")"+" ");
			}
			return;//返回上一层搜索(上一层dfs中) --- 依次返回的开端
		}
		if(x < 1 || x > n || y < 1 || y > m) {//判断此层深入越界否
			return;
		}
		if(book[x][y] == 1) {
			return;
		}
		book[x][y] = 1;
		note[top].x = x;
		note[top].y = y;
		top++;
		if(a[x][y] >= 5 && a[x][y] <= 6) {//水管为直管
			if(front == 1) {			 //进水口在哪边(front)   	(二者结合确定下一个水管的进水方向)!
				dfs(x,y+1,1);
			}
			if(front == 2) {
				dfs(x+1,y,2);
			}
			if(front == 3) {
				dfs(x,y-1,3);
			}
			if(front == 4) {
				dfs(x-1,y,4);
			}
		}
		if(a[x][y] >= 1 && a[x][y] <= 4) {//水管为弯管 
			if(front == 1) {			 //进水口在哪边(front) 		(二者结合确定下一个水管的进水方向)!
				dfs(x+1,y,2);
				dfs(x-1,y,4);
			}
			if(front == 2) {
				dfs(x,y+1,1);
				dfs(x,y-1,3);
			}
			if(front == 3) {  //只有当a[x][y] = 2  or 1 时候
				dfs(x+1,y,2);//此为a[x][y] = 2
				dfs(x-1,y,4);//此为a[x][y] = 1
			}
			if(front == 4) {
				dfs(x,y+1,1);
				dfs(x,y-1,3);
			}
		}
		
		book[x][y] = 0;//此行代表每层的深搜依次返回时候,依次取消标记
		top--;//此行可以使note[i]中的x,y重新赋值
		return;//返回上一层dfs
	}
	public static void main(String[] args) {
		Scanner scanner = new Scanner(System.in);
		n = scanner.nextInt();
		m = scanner.nextInt();
		for(int i=0;i<100;i++) {
			note[i] = new Note();
		}
		for(int i=1;i<=n;i++) {
			for(int j=1;j<=m;j++) {
				a[i][j] = scanner.nextInt();
			}
		}
		dfs(1,1,1);
		if(flag == 0) {
			System.out.println("impossible");
		}
	}
}

小结(二者区别):我认为广搜偏于蔓延性的任务进展,达到条件直接跳出循环;而深搜是偏于专一深入,并且非一次深入,直至找出所有能满足问题答案的解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值