基于论文摘要的文本分类与关键词抽取挑战赛

该文介绍了如何使用NLP技术处理两个任务:1)文本二分类,判断论文是否属于医学领域,采用逻辑回归和BOW模型;2)关键词提取,可使用CRF或Transformer模型。文中提供了一个基于BOW和LogisticRegression的基线解决方案,涉及数据预处理、特征提取和模型训练过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7月22日学习笔记

一、赛题解析:

比赛链接
这个赛题涉及两个实践任务:
1.判断论文是否属于医学领域的文献:
这是一个文本二分类任务。机器需要根据论文的标题、摘要、作者等信息,判断该论文是医学领域的文献还是非医学领域的文献。

2.提取论文关键词:
这是一个文本关键词识别任务。机器需要从论文的标题、摘要、作者等信息中识别并提取出与论文内容相关的关键词。

3.数据集解析:
训练集和测试集数据以CSV格式文件给出。数据集包含多个字段:标题(Title),作者(Author),摘要(Abstract),关键词(Keywords) - 用于任务2的标签,标签(Label) - 用于任务1的标签,表示论文是否属于医学领域的文献。可以使用Python的pandas库来读取训练集和测试集的数据。
这两个任务可以使用自然语言处理(NLP)技术来处理和解决。对于任务1,可以使用文本分类模型,如逻辑回归、支持向量机、或者深度学习模型如循环神经网络(RNN)或卷积神经网络(CNN)。对于任务2,可以使用序列标注模型,如条件随机场(CRF)或者使用Transformer-based模型,如BERT或GPT进行关键词提取。

为了解决这两个任务,还需要对文本数据进行预处理,如分词、去除停用词和特殊字符等。同时,为了提高模型的性能,可以尝试数据增强技术、调优超参数和模型融合等方法。

实践思路:
本赛题涉及两个子任务:文本二分类(判断论文是否属于医学领域的文献)和文本关键词提取。下面是针对任务一(文本二分类)的实践思路和基线(Baseline)方法:

  1. 数据预处理:对论文标题、摘要和作者等文本数据进行预处理,包括文本清洗(去除特殊字符、标点符号等)和分词操作。
  2. 特征提取:使用传统的文本特征提取方法,如TF-IDF(词频-逆文档频率)或BOW(词袋模型),将文本转换为向量表示,以便机器学习模型能够处理。
  3. 构建训练集和测试集:将预处理后的文本数据划分为训练集和测试集,以便模型的训练和评估。
  4. 选择机器学习模型:根据实际情况选择适合的机器学习模型,例如朴素贝叶斯、支持向量机(SVM)、随机森林等。这些模型在文本分类任务中通常表现良好。
  5. 模型训练和评估:使用训练集对选定的机器学习模型进行训练,并使用测试集对模型进行评估。评估指标可以选择准确率、精确率、召回率、F1值等来衡量模型性能。
  6. 调参优化:如果模型效果不理想,可以尝试调整特征提取和机器学习模型的参数,以提高模型性能。

Baseline 方法:
在Baseline中,采用了BOW(词袋模型)将文本转换为向量表示,并选择逻辑回归模型来完成训练和评估。逻辑回归是一种简单而高效的分类算法,适用于二分类任务

任务一baseline代码讲解

1.首先是baseline的代码:

导入pandas用于读取表格数据

import pandas as pd

导入BOW(词袋模型),可以选择将CountVectorizer替换为TfidfVectorizer(TF-IDF(词频-逆文档频率)),注意上下文要同时修改,亲测后者效果更佳

from sklearn.feature_extraction.text import CountVectorizer

导入LogisticRegression回归模型

from sklearn.linear_model import LogisticRegression

过滤警告消息

from warnings import simplefilter
from sklearn.exceptions import ConvergenceWarning
simplefilter("ignore", category=ConvergenceWarning)

读取数据集

train = pd.read_csv('/home/aistudio/data/data231041/train.csv')
train['title'] = train['title'].fillna('')
train['abstract'] = train['abstract'].fillna('')
test = pd.read_csv('/home/aistudio/data/data231041/test.csv')
test['title'] = test['title'].fillna('')
test['abstract'] = test['abstract'].fillna('')

提取文本特征,生成训练集与测试集

train['text'] = train['title'].fillna('') + ' ' +  train['author'].fillna('') + ' ' + train['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')
test['text'] = test['title'].fillna('') + ' ' +  test['author'].fillna('') + ' ' + test['abstract'].fillna('')+ ' ' + train['Keywords'].fillna('')

BOW特征提取

vector = CountVectorizer().fit(train['text'])
train_vector = vector.transform(train['text'])
test_vector = vector.transform(test['text'])

初始化LogisticRegression模型

model = LogisticRegression()

开始训练,这里可以考虑修改默认的batch_size与epoch来取得更好的效果

model.fit(train_vector, train['label'])

利用模型对测试集label标签进行预测

test['label'] = model.predict(test_vector)

生成任务一推测结果

test[['uuid', 'Keywords', 'label']].to_csv('submit_task1.csv', index=None)

2.以下是自己对代码的理解:

这段代码是一个简单的文本二分类任务(任务一)的实现。代码中使用了词袋模型(BOW)和逻辑回归模型来对论文进行分类,判断论文是否属于医学领域的文献。

  1. 导入所需的库:代码首先导入了pandas用于读取表格数据,然后导入了CountVectorizer(词袋模型)用于提取文本特征,以及LogisticRegression回归模型作为分类器。最后,通过导入simplefilter和ConvergenceWarning来过滤警告消息。

  2. 读取数据集:代码使用pandas库读取了训练集和测试集的CSV格式文件,并对缺失的字段进行了填充。

  3. 提取文本特征:通过将标题、作者、摘要和关键词连接在一起,生成了新的文本特征列"text",作为模型输入。

  4. 特征向量化:使用CountVectorizer对"train[‘text’]"和"test[‘text’]"中的文本进行向量化处理,将文本转换为数值型的特征向量,以便于机器学习模型处理。

  5. 初始化模型:创建了LogisticRegression模型的实例,作为分类器。

  6. 模型训练:通过调用"model.fit(train_vector, train[‘label’])"对模型进行训练,其中"train_vector"是训练集的特征向量,"train[‘label’]"是训练集中的标签(即论文是否属于医学领域的文献)。

  7. 预测测试集:使用训练好的模型对测试集的特征向量"test_vector"进行预测,得到测试集的预测标签。

  8. 生成结果文件:将测试集的uuid(论文的唯一标识符)、Keywords(任务2中的标签)以及预测的label(任务1中的预测标签)保存为CSV文件,生成任务一推测结果"submit_task1.csv"。

需要注意的是,代码中的逻辑回归模型使用了默认的参数,这里提到了可以考虑修改batch_size和epoch来取得更好的效果,但实际上逻辑回归并不涉及batch_size和epoch等参数,这些参数主要用于深度学习模型的训练。对于逻辑回归,可以考虑调整其他参数,如正则化项(C)等来优化模型。

此代码是一个基线(Baseline)实现,对于更复杂的文本分类任务,可以尝试使用其他特征提取方法(如TF-IDF)、调整模型参数或使用更复杂的深度学习模型来进一步提升性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值