relu梯度过大导致神经元死亡问题

早在很多年前 就有人提出了这个问题:

"Unfortunately, ReLU units can be fragile during training and can "die". For example, a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again. If this happens, then the gradient flowing through the unit will forever be zero from that point on. That is, the ReLU units can irreversibly die during training since they can get knocked off the data manifold. For example, you may find that as much as 40% of your network can be "dead" (i.e. neurons that never activate across the entire training dataset) if the learning rate is set too high. With a proper setting of the learning rate this is less frequently an issue."

        关于通过逻辑推导证明为何relu梯度过大会产生神经元死亡的问题,知乎上有一篇高赞回答,我在这里就不多赘述。

        权重更新: 权重新值=当前权重值-学习率*当前权重的梯度,当学习率过大:会导致学习率*当前权重的梯度过大,进而导致权重新值为负,当权重新值为负,任何输入的正值*权重参数后都会变为负值,负值通过relu函数后都会变为0,从而使此神经元失效;同时,relu在0处的导数为0,因此后边不会有机会通过反向传播将负的权重值重新变为正值,因此次神经元将会永久失效

一些解决神经元死亡问题的方法包括:

  1. Leaky ReLU: Leaky ReLU是对ReLU的改进,允许小于零的部分有一个小的斜率,而不是完全变为零。这有助于缓解神经元死亡问题。

  2. Parametric ReLU(PReLU): PReLU是一种引入可学习参数的激活函数,允许网络学习适合数据分布的负数部分的斜率。

  3. Exponential Linear Unit(ELU): ELU是一种允许小于零的输入有一个非零斜率的激活函数,它在一定程度上缓解了神经元死亡问题,并提供了更平滑的激活。

  4. Randomized ReLU: 在训练过程中,以一定的概率将ReLU的输出变为零,这有助于避免神经元死亡。

选择适当的激活函数取决于具体的任务和数据分布,以及网络的结构。在实践中,通过尝试不同的激活函数和初始化策略,可以找到适合特定问题的最佳配置。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值