线性模型
机器学习本质上分为三个步骤,第一步设未知函数,第二步定义损失函数,最后优化函数
是由于普通的线性模型往往存在很多局限性,所以我们需要去训练出更复杂一点,更灵活一点的模型来辅助完成目标
我们可以看一下下面这个图,图中的红线是我们需要实现的目标
这里我们尝试使用0123这些蓝线来对红线进行模拟
我们可以发现红色的曲线及分段线性曲线,它可以看作是一个常数,再加上一堆蓝色的函数
也就是如下图所示
这也告诉我们,只要有足够的蓝色行数,我们就可以通过权重加成把它变成任何连续的曲线
比如,我们使用观看youtub中李宏毅老师深度学习的课程人数,来解释
X1代表前一天的观看次数,X 代表两天前观看次数,X3代表 3 天前的观看次数,每一个 i 就代表了一个蓝色的函数。每一个蓝色的函数都用一个 Sigmoid 函数来比近似它
为了简化起见,括号里面的式子为
我们也可以用矩阵跟向量相乘的方法书写
接下来我们就把w的每一行或是每一列拿出来,这里无论是行还是列可以,我们只需要把w的拿出来的每一行或每一列拼成一个很长的向量,再把刚刚的向量拼上来
这样就构建出了一个很灵活的函数