二分思想(二分查找,整数二分,浮点数二分)

二分思想

🤞二分思想就是,在一段连续的区间,找到中点,分成两段区间,然后排除掉一条不符合要求的区间,一步一步,最终靠近或者直接求出答案
🤞这里在拿出来说一下,如果我们有一个函数具有单调性,那么它一定可以二分。但是没有单调性,它也有可能能够二分
请添加图片描述

🐧二分查找

注意点

❤️二分查找是一个挺好理解的例子
但是这里需要特别注意,排序的区间一定要有序,重要的事说三遍,区间一定要有序!
区间一定要有序呀!!!

❤️我这个大冤种就是忽略这个条件错了一个考试的题目。

思路分析

😁如果我们有一个升序存放的数组,然后我们需要查找用户输入的数是否在这个数组中,那么我们应该怎么去解决呢?
😁根据二分思想,我们首先通过数组的起始下标 L 和末尾下标 R获取中间下标的值。然后直接开始循环,只要 L < R 就一直寻找,当我们找的数等于中间的 num[mid] 的时候,我们返回它的下标。

demo
#include <stdio.h>

int find(int *num, int numSize, int n)
{
	int l = 0, r = numSize - 1, mid;
	
	while(l <= r)
	{
		mid = (l + r) >> 1;
		if(num[mid] == n) return mid;
		else if(num[mid] > n) r = mid - 1;
		else l = mid + 1;
	}
	return -1;
}

int main()
{
	int num[10] = {1,2,2,3,3,4,5,6,7,10};
	
	int n, l, r;
	l = 0, r = 9;
	
	scanf("%d", &n);
	
	int ans = find(num,10,n);
	
	if(ans != -1) printf("本数存在,下标为%d",ans);
	else printf("本数不存在");
	return 0;
}

🐧整数二分模板

边界问题

👍这个问题其实根我们快速排序,归并排序的边界问题一样。 但是我们需要特别注意这种问题,这里附上之前分析的链接。
排序边界问题分析

demo

❤️如果我们不想去分析边界问题,直接记模板就行了
二分模板

int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

🐧浮点数二分模板

❤️浮点数二分的话,其实是不用注意边界问题的。

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

总结

👌当题目中出现求最大值的最小值,或者最小值的最大值这类字眼的时候,这其实就是提示我们使用二分。
👌少年不惧岁月长,彼方尚有荣光在!
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不会画饼鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值