二分思想
🤞二分思想就是,在一段连续的区间,找到中点,分成两段区间,然后排除掉一条不符合要求的区间,一步一步,最终靠近或者直接求出答案
🤞这里在拿出来说一下,如果我们有一个函数具有单调性,那么它一定可以二分。但是没有单调性,它也有可能能够二分 。
🐧二分查找
注意点
❤️二分查找是一个挺好理解的例子
但是这里需要特别注意,排序的区间一定要有序,重要的事说三遍,区间一定要有序!
区间一定要有序呀!!!
❤️我这个大冤种就是忽略这个条件错了一个考试的题目。
思路分析
😁如果我们有一个升序存放的数组,然后我们需要查找用户输入的数是否在这个数组中,那么我们应该怎么去解决呢?
😁根据二分思想,我们首先通过数组的起始下标 L 和末尾下标 R获取中间下标的值。然后直接开始循环,只要 L < R 就一直寻找,当我们找的数等于中间的 num[mid] 的时候,我们返回它的下标。
demo
#include <stdio.h>
int find(int *num, int numSize, int n)
{
int l = 0, r = numSize - 1, mid;
while(l <= r)
{
mid = (l + r) >> 1;
if(num[mid] == n) return mid;
else if(num[mid] > n) r = mid - 1;
else l = mid + 1;
}
return -1;
}
int main()
{
int num[10] = {1,2,2,3,3,4,5,6,7,10};
int n, l, r;
l = 0, r = 9;
scanf("%d", &n);
int ans = find(num,10,n);
if(ans != -1) printf("本数存在,下标为%d",ans);
else printf("本数不存在");
return 0;
}
🐧整数二分模板
边界问题
👍这个问题其实根我们快速排序,归并排序的边界问题一样。 但是我们需要特别注意这种问题,这里附上之前分析的链接。
排序边界问题分析
demo
❤️如果我们不想去分析边界问题,直接记模板就行了
二分模板
int bsearch_1(int l, int r)
{
while (l < r)
{
int mid = l + r >> 1;
if (check(mid)) r = mid; // check()判断mid是否满足性质
else l = mid + 1;
}
return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
while (l < r)
{
int mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
return l;
}
🐧浮点数二分模板
❤️浮点数二分的话,其实是不用注意边界问题的。
double bsearch_3(double l, double r)
{
const double eps = 1e-6; // eps 表示精度,取决于题目对精度的要求
while (r - l > eps)
{
double mid = (l + r) / 2;
if (check(mid)) r = mid;
else l = mid;
}
return l;
}
总结
👌当题目中出现求最大值的最小值,或者最小值的最大值这类字眼的时候,这其实就是提示我们使用二分。
👌少年不惧岁月长,彼方尚有荣光在!