离散数学·集合论【等价关系和序关系】

练习放在文末

模n同余关系

模上n,得出的余数是相同的(重点在余数)

例子

just scan 

等价关系

首先R是AA卡氏积的一个子集,然后R满足自反,对称和传递

等价类

[x]是所有与x满足关系R的元素的集合

定理

商集

例子

  

满足R关系的所有等价类的集合

划分

义如其名——就好比一个关系图里,一块一块的区域被划分了。花A是P(A)的一个子集

空集不是它的元素

元素不相交

例子

正如划线句子所描述的:

每个划分对应一个等价关系

当进行完划分后,需要用等价关系的形式描述这个划分 

等价关系与划分是一一对应的

等价关系是划分;A被划分成很多块,花A就是此时的划分,RA是A的等价关系,然后x,y共属于A上的一个被划分的块,且x,y满足等价关系。同块关系是一个等价关系。

划分的加细

有点类似子集,花A的每一个划分块都能被花B的某个划分块涵盖(花B将A划分为一个大的块——A本身。花A就无论如何都是花B的一个加细)

偏序关系

主要是R要为反对称。(不要用小于等于这个特质来记忆这个概念,就只要知道偏序关系满足自反、反对称、传递)而R中元素有点类似小于等于的关系(x不能在y的后面,即有(x,y)不能有(y,x))(R为有序对的集合)

注意:没有要求偏序集中的元素都是可以比较的,正所谓不要用小于等于这个特质来理解

全序关系

首先,对于偏序集。其次,任意的y与x是可以比较的(也就是在哈斯图中,任意的元素都直接或间接地相连)

拟序关系

记住反自反,反对称,传递

定理

定理

三岐性

与上面定理不尽相同(上面定理指出至多一项成立,而三岐性要求必须有一项成立),(个人看法)三岐性要求拟序中每一项都可比。

拟序应该也不是重点

哈斯图

画哈斯图的规则

例子

最大元、最小元

首先,y是属于B的。然后,在B内y能与所有元素比较,才能算是最大(小)元(否则不存在最大(小)元)

极大元、极小元 

大体上跟最大(小)元相同。唯一区别:极大(小)元是可以出现元素无法比较的情况,此时该元素既是极大元,又是极小元。 

上界、下界

跟最大(小)元不同的是:y属于A(也就是全定义域的最大(小)元)(仍然是要求y能与所有元素比较)

上(下)界其实本身就包含了最大(小)元的意思,所以同样要求能与所有元素进行比较(为了方便记忆)

最后就是区域内最大(小)元加上整个集合内最大(小)元(如果是重叠的,只算作一个,并不是说上界的数量是定的) 

上界应该都是存在的,但可能非常大。

上确界、下确界

要求的是上(下)界的最小(大)元素

练习

34题(1)(2)

题目应该是省略掉了合成符号 

37题

(应该是)如果给定具体的集合(类似题目中的A,而且给定具体运算)时,可以用易知来直接回答等价关系

商集是等价类的集合

39题

不难,但是通过题目来应用商集和等价关系的知识

41题

不难,但是足够经典

50题

类似41题

还是动手写写,其实看着是很简单,但是实际实践时,才会发现问题,有时候是懂那个意思,却不知道如何表达

这个反对称值得再写一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值