练习放在文末
模n同余关系
模上n,得出的余数是相同的(重点在余数)
例子
just scan
等价关系
首先R是AA卡氏积的一个子集,然后R满足自反,对称和传递
等价类
[x]是所有与x满足关系R的元素的集合
定理
商集
例子
满足R关系的所有等价类的集合
划分
义如其名——就好比一个关系图里,一块一块的区域被划分了。花A是P(A)的一个子集
空集不是它的元素
元素不相交
例子
正如划线句子所描述的:
每个划分对应一个等价关系
当进行完划分后,需要用等价关系的形式描述这个划分
等价关系与划分是一一对应的
等价关系是划分;A被划分成很多块,花A就是此时的划分,RA是A的等价关系,然后x,y共属于A上的一个被划分的块,且x,y满足等价关系。同块关系是一个等价关系。
划分的加细
有点类似子集,花A的每一个划分块都能被花B的某个划分块涵盖(花B将A划分为一个大的块——A本身。花A就无论如何都是花B的一个加细)
偏序关系
主要是R要为反对称。(不要用小于等于这个特质来记忆这个概念,就只要知道偏序关系满足自反、反对称、传递)而R中元素有点类似小于等于的关系(x不能在y的后面,即有(x,y)不能有(y,x))(R为有序对的集合)
注意:没有要求偏序集中的元素都是可以比较的,正所谓不要用小于等于这个特质来理解
全序关系
首先,对于偏序集。其次,任意的y与x是可以比较的(也就是在哈斯图中,任意的元素都直接或间接地相连)
拟序关系
记住反自反,反对称,传递
定理
定理
三岐性
与上面定理不尽相同(上面定理指出至多一项成立,而三岐性要求必须有一项成立),(个人看法)三岐性要求拟序中每一项都可比。
拟序应该也不是重点
哈斯图
画哈斯图的规则
例子
最大元、最小元
首先,y是属于B的。然后,在B内y能与所有元素比较,才能算是最大(小)元(否则不存在最大(小)元)
极大元、极小元
大体上跟最大(小)元相同。唯一区别:极大(小)元是可以出现元素无法比较的情况,此时该元素既是极大元,又是极小元。
上界、下界
跟最大(小)元不同的是:y属于A(也就是全定义域的最大(小)元)(仍然是要求y能与所有元素比较)
上(下)界其实本身就包含了最大(小)元的意思,所以同样要求能与所有元素进行比较(为了方便记忆)
最后就是区域内最大(小)元加上整个集合内最大(小)元(如果是重叠的,只算作一个,并不是说上界的数量是定的)
上界应该都是存在的,但可能非常大。
上确界、下确界
要求的是上(下)界的最小(大)元素
练习
34题(1)(2)
题目应该是省略掉了合成符号
37题
(应该是)如果给定具体的集合(类似题目中的A,而且给定具体运算)时,可以用易知来直接回答等价关系
商集是等价类的集合
39题
不难,但是通过题目来应用商集和等价关系的知识
41题
不难,但是足够经典
50题
类似41题
还是动手写写,其实看着是很简单,但是实际实践时,才会发现问题,有时候是懂那个意思,却不知道如何表达
这个反对称值得再写一下